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Abstract

To design high performance, practically implementable control laws, it is important to have the
appropriate tools for design and analysis. These tools should enable the following: 1.) they should
be based on robustness theory that is nonconservative with respect to the type of uncertainty being
considered; 2.) they should allow performance to be measured in a meaningful way; 3.) they should
yield controllers that are of sufficiently low order to be implemented on control processors with
limited throughput capabilities; 4.) they should be implemented via efficient numerical algorithms.
The research cited in this final report has led to the further development of robustness theories and
algorithms which include phase information regarding the uncertainty. In addition, this research
has expanded the theory of optimal and suboptimal reduced-order control design and led to the
development of new continuation algorithms for H; optimal reduced-order modeling and control
based on the optimal projection equations. Finally, a new fixed-structure approach to complex
structured singular value controller synthesis has been developed. This approach a priori constrains
the order of the D-scales in the optimization process and can lead to much more robust controllers

than standard D-K iteration and curve fitting approaches.
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1. Introduction

To design high performance, practically implementable control laws, it is important to have

the appropriate tools for design and analysis. These tools should enable the following:

1. They should be based on robustness theory that is nonconservative with respect to the type of

uncertainty being considered,;
2. They should allow performance to be measured in a meaningful way;

3. They should yield controllers that are of sufficiently low order to be implemented on control

processors with limited throughput capabilities;
4. They should be implemented via efficient numerical algorithms.

The ultimate aim of this research is to develop control design and analysis tools with the above

characteristics.

From a theoretical perspective, to accomplish nonconservatism with respect to real, constant
uncertainty or with respect to systems that are inherently stable (such as positive real systems),
it is important to develop robustness theories that are not totally dependent on norms. This is
because norm-based tests do not allow the inclusion of phase information regarding the uncertainty.
These theories would be expected to deviate significantly from the popular but norm-based small

gain tests.

Often times in the design of controllers for flexible structures, higher frequency modes are
deleted from the model in order to enable the design of lower order controllers. The unmodeled
modes are then accounted for as unstructured (i.e., magnitude bounded but arbitrary phase) un-
certainty. If the unmodeled dynamics are actually fairy well known, an alternative is to include
them in the control design model and design a reduced-order controller. The low-order controller
can be designed by reducing the dimension of an optimal full-order controller or by direct design
(i.e., directly optimizing some cost function). Hence, in this design process the structure of the

controller is constrained a priori.

Another important fixed-structure problem which appears in robust control is a priori constrain-
ing the order of the D-scales in complex structured singular value (CSSV) controller synthesis. This
robust design technique enables the design of controllers that are robust with respect to multiple
block, unstructured uncertainty and also guarantee a certain measure of robust performance. How-

ever, current techniques for CSSV controller synthesis require the fitting of potentially very high
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order D-scales with lower order approximations to avoid extremely high order controllers. This
curve-fitting step can be very suboptimal and can even lead to a degradation of robust stability
and performance in comparison with a standard H,, design. This highlights the importance of

developing CSSV controller synthesis techniques that optimize the D-scales subject to a constraint

on the D-scale order.

The above discussion motivates the objectives of PIRC. One objective was to extend majorant
analysis to handle positive-real systems and specialize the basic theory to the case of collocated,
decentralized, static rate feedback. The next objective was to extend the results to the case of
collocated, dynamic rate feedback. In addition, we desired to compare the positive real majorant
bounds with a totally norm based majorant bound and a performance bound obtained from complex
structured singular value theory. Finally, we aimed to extend the results to the more realistic case

in which the sensor and actuater dynamics are included in the plant model.

Like positive real majorant theory, Popov theory also enables the incorporation of phase infor-
mation regarding the uncertainty. Our consultant, Dr. Wassim Haddad’s first objective here was
to extend Popov theory to handle bidirectional uncertainty analysis. We also desired to develop a
special-case numerical algorithm to implement Popov robustness analysis. Next, we aimed to de-
velop a more general algorithm and apply it to a realistic example. Due to our collaboration with
Dr. Jonothan How at MIT, the analysis was to be performed using the Middeck Active Control
Experiment (MACE).

The development of Popov robustness theory was largely motivated by the early work of Harris
Corporation in Maximum Entropy control design, which has been shown empirically to nonconser-
vatively execute the design of robust controllers for flexible structures with modal uncertainties.
This research sought to develop a rigorous theoretical foundation for Maximum Entropy design and

also to develop more efficient numerical algorithms for Maximum Entropy design.

An additional objective of this research was to develop continuation algorithms for optimal,
reduced-order control design based on the optimal projection equations as opposed to the gradient
expressions. Gradient-based methods directly optimize the controller parameters. To keep the
number of controller parameters from becoming too large the controller is constrained to a minimal
parameter basis. However, this constraint tends to introduce numerical ill-conditioning since the
assumptions behind a minimal parameter basis are not always satisfied along the homotopy path or

may be “poorly satisfied.” The advantage of a gradient-based approach is that it easily enables the

Harris Corporation 9 January 1995 00051.tex




development of “globally convergent homotopy algorithms,” i.e., homotopy algorithms for which a
well-conditioned homotopy map is guaranteed with probability one. An alternative which avoids
the ill-conditioning due to the controller basis constraint is to develop a continuation algorithm
based directly on the optimal projection equations. This class of algorithms does not currently fit
into globally convergent homotopy theory, but for certain problems algorithms of this type can be

implemented very efficiently and have exhibited good numerical robustness.

A final objective of this research was to develop a CSSV controller synthesis technique that
constrains the order of the D-scales in the optimization process. This research has the potential to
significantly impact a very important area of robust control design by developing a more reliable

and optimal CSSV synthesis process. An enumeration of the research objectives is given below. .

Research Objectives

1. For the case of uncertain, strictly positive real plants controlled by positive real compensators,
use majorant analysis to develop frequency domain performance bounds that are less conser-
vative than previous majorant results. Then extend these results to the more realistic case of

plants with sensor and actuater dynamics.

2. Extend recent work in Popov robustness theory, wherein the uncertainty is assumed to vary
in only one direction (positive or negative), so that the uncertainty is allowed to vary in both

directions.
3. Use Lyapunov functions to provide a more rigorous foundation for Maximum Entropy design.

4. Develop a continuation algorithm for Maximum Entropy design that can exhibit quadratic

convergence properties along the continuation path.

5. Apply and compare both frequency domain and state-space versions of the Popov test to a

benchmark problem. The state-space tests were to be applied via homotopy algorithms.

6. Develop a general algorithm for Popov analysis (with bi-directional uncertainty) and apply it
to the Middeck Active Control Experiment (MACE) at MIT.

7. To better understand the relationship between the optimal projection equations for H; optimal
reduced-order design and suboptimal controller reduction methods, extend optimal projection
theory to the case in which the controller is not a priori assumed to be minimal (the standard

assumption of optimal projection theory). Also, compare the projections used by the subopti-
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mal methods that are able to produce a minimal realization of a nonminimal LQG compensator

with the optimal projection.

8. To aid in the development of a rigorous initialization technique for continuation and homotopy
algorithms for H, or Hy/H optimal design, develop a method for constructing nearly non-

minimal LQG compensators.

9. As a step in developing a continuation algorithm for H; optimal reduced-order control design
using the optimal projection equations, develop a continuation algorithm for the easier problem

of H, optimal model reduction using the optimal projection equations.
10. Develop a continuation algorithm for H; optimal, reduced-order control design.

11. As a foundation for CSSV controller synthesis with fixed-order D-scales, use recent Hy/Hq
theory to develop a CSSV analysis technique for constant D-scales and then fixed-order dynamic

D-scales.

12. Develop a CSSV controller synthesis technique for constant D-scales.
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3. Frequency Domain Performance Bounds for Uncertain Positive Real Plants

Controlled by Strictly Positive Real Compensators [2.6, 2.14, 2.20, 2.29]

Many of the developments in robustness analysis have focused exclusively on the determination
of stability. However, in practical engineering, performance issues are paramount, so it is also
important to determine the type of performance degradation that occurs due to uncertainty in
“the system modeling. A common feature of a class of these results [3.1-3.4] is that they rely on

majorant bounding techniques.

In [3.1-3.4] performance bounding is measured in basically three ways. References [3.1] and
[3.2] measure performance in terms of second order statistics. In particular, bounds are obtained on
the steady-state variances of selected system variables. In [3.3], performance is expressed in terms
of the frequency response of selected system outputs. This result led to a new upper bound for the
complex structured singular value [3.5). Finally, [3.4] considers the transient response of certain
system outputs, a performance measure which had not previously been treated in the robustness

literature.

A common feature of these results and most other robustness results, with the possible exception
of methods based on extensions of Popov analysis and parameter-dependent Lyapunov functions is
that they do not predict unconditional stability for feedback systems consisting of a positive real

plant controlled by a strictly positive real controller.

This research uses the logarithmic norm in the context of majorant analysis to develop tests for
robust stability and performance that predict unconditional stability for the above case and also
yield robust performance bounds. As in [3.3], this result considers the frequency domain behavior
of a given system. The results are specialized to the case of static, decentralized, collocated rate
feedback and dynamic, collocated rate feedback. An example of the results is shown in Figure 3.1
which shows the performance envelope predicted by the (new) positive real majorant analysis and
the actual variations due to perturbations in the lowest natural frequency. For this case, completely
norm-based majorant analysis [3.3] and complex structured singular value analysis [3.5] predicted
instability. Figure 3.2 compares the positive real majorant bound (PRMB) with the complex block-
structure majorant bound (CBSMB) from [3.3] and the complex structured singular value bound
(CSSVB) derived from [3.5] for analysis of an Euler-Bernouilli beam with frequency uncertainty.

Notice that over all frequencies PRMB < CBSMB < CSSVB.
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These results have been extended to plants with sensor and actuater dynamics. Examples have

shown similar nonconservatism to that described above.
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Example 8.3: Three Modes with SHz Uncertainty
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Figure 3.1. Performance Bound for Example 8.3 of {2.1]

(3 modes, lowest frequency uncertain)

Harris Corporation

11

January 1995 00051.tex




Example 8.5: Euler-Bemoulli Beam
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Figure 3.2. Comparison of PRMB, CBSMB, and CSSVB for Example 8.5 of [2.1]
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4. Maximum Entropy-Type Lyapunov Functions for Robust Stability and Per-
formance Analysis [2.1, 2.15]

The Maximum Entropy approach to robust control was developed to address the problem of
modal uncertainty in flexible structures [4.1-4.4]. The rationale for this approach was based upon
insights from the statistical analysis of lightly damped structures. Despite favorable comparisons
to other approaches and experimental application, the basis and meaning of the approach remains
mostly empirical. This research was initiated to make significant progress towards developing a

rigorous foundation for Maximum Entropy design.

Besides statistical modal analysis techniques, a variety of formulations have been put forth for
justifying the Maximum Entropy approach. To reproduce certain covariance phenomena of un-
certain multimodal systems (decorrelation, incoherence, and equipartition) a multiplicative white
noise model was invoked [4.1, 4.2]. The specific model chosen was interpreted in the sense of
Stratonovich, thus entailing a critical correction term in the covariance equation due to the con-
version from Stratonovich to Ito calculus. The Stratonovich model was itself based upon a limiting
process in which the parameter entropy increased, thus suggesting the name “Maximum Entropy”

control.

An alternative justification for the Maximum Entropy model was given in [4.5] where a covari-
ance averaging approach was used to show that if the state covariance is averaged over uncertain
modal frequencies possessing a Cauchy distribution, then the resulting averaged covariance satisfies

the Maximum Entropy covariance model.

Although the various formulations of Maximum Entropy theory lend considerable insight into
the nature of the approach, there remains a significant gap between this approach and more con-
ventional techniques, such as Ho, theory. The missing link, in our opinion, is the lack of a Lyapunov
function that guarantees the robust stability of the closed-loop control system. In this regard it was
long suspected that such a Lyapunov function would be unconventional, that is, unlike those arising
in Hy, theory. This view arose from the fact that the Maximum Entropy controllers were often
robust to large perturbations in the damped natural frequencies, that is, the imaginary part of the
eigenvalues. Such perturbations are highly structured, and thus are often treated conservatively by

conventional small-gain-type bounds.

This research provided a Lyapunov-function basis for the Maximum Entropy covariance model

for the case of modal frequency uncertainty. In fact, in this special case, two alternative Lyapunov
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functions along with corresponding performance bounds were provided. Each Lyapunov function
involves the sum of two matrices, the first being the solution to the Maximum Entropy equation,
and the second being a constant auxiliary portion. The construction is similar to the parameter-
dependent Lyapunov function technique developed in [4.6], except that in the present case the

auxiliary portion is constant, that is, independent of the uncertainty.

While this research potentially provides a Lyapunov function foundation for the Maximum
Entropy control approach, our results are currently limited to open-loop analysis. An illustration of
the performance bounds predicted by the Maximum Entropy Lyapunov functions is given in Figure
4.1 which considers a one mode system with frequency uncertainty. Note that both Maximum
Entropy performance bounds are much less conservative than the performance bound developed in
[4.7].
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5. A Homotopy Algorithm for Maximum Entropy Design [2.2, 2.16]

The linear-quadratic-guassian (LQG) compensator has been developed to facilitate the design
of control laws for complex, multi-input multi-output (MIMO) systems such as flexible structures.
However, it is well known that an LQG compensator can yield a closed-loop system with arbitrarily
poor performance robustness properties. This deficiency has led to generalizations of LQG that
allow the design of robust controllers. One such generalization of LQG is the Maximum Entropy
control design approach discussed in the previous section. Although, as previously mentioned, the
rigorous theoretical foundation for Maximum Entropy design is not yet complete, it has proven to
be an effective tool in the design of robust control laws for ground-based flexible structure testbeds

[5.1, 5.2] and for certain benchmark problems [5.3, 5.4].

The computation of full-order Maximum Entropy controllers requires the solution of a set of
equations consisting of two Riccati equations coupled to two Lyapunov equations. If the uncertainty
is assumed to be zero, these equations decouple and the Riccati equations become the standard
LQG Riccati equations. A homotopy algorithm for solving these equations is described in [5.5].
This algorithm is based on first solving an LQG problem and gradually increasing the uncertainty
level until the desired degree of robustness is achieved. Unfortunately, the algorithm of [5.5] relies on
an iterative scheme that tends to have increasingly poor convergence properties as the uncertainty

level is increased.

The contribution of this research is the development of a new homotopy algorithm for full-
order Maximum Entropy design. The algorithm development utilizes the results of [5.6]. Unlike
the previous approach, this algorithm has quadratic convergence rates along the homotopy curve.
The algorithm has been implemented in MATLAB and is illustrated using a single-input, single-
output control problem for the ACES testbed at NASA Marshall Space Flight Center in Huntsville,

Alabama.

The Bode plots of the 17th-order open loop ACES plant are shown in Figure 5.1. The basic
control objective is to attenuate the lower frequency modes of the structure (i.e., the modes less
than 3 Hz). Each of the flexible modes is considered uncertain. The magnitude of the uncertainties

is determined by a scalar parameter (§).
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For this example, the MATLAB implementation of the Maximum Entropy Homotopy algorithm
was run on a 486, 33 MHz PC. Table 5.1 shows some of the runtime statistics of the program. The
highest uncertainty design, corresponding to §=5 was obtained in approximately one hour. Notice
that the number of flops and the run time are essentially linear with respect to the log of the scale

factor 4. This general trend has also been observed in other design examples.

Table 5.1. Run-Time Statistics of the Maximum Entropy Homotopy Algorithm

Initial Final RealTime Predictions
beta beta Megaflops (sec.) & Corrections
0 .01 1246.25 1027.27 43
0.1 1 1061.41 884.80 36
. 1 1061.49 889.84 36
1 5 1083.25 995.87 41

Figures 5.2 and 5.3 compare respectively the magnitude and phase of the initial LQG controller
and the Maximum Entropy controllers corresponding to f = 1 and # = 5. Notice that the § =5
controller has a very smooth frequency response and is positive real over a very large frequency
band. The smoothness of this controller indicates that its effective order is much less than 17. Using
balanced controller reduction, a 4th order compensator was obtained that was nearly identical to
the 17th order compensator.
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6. The Multivariable Parabola Criterion for Robust Control Design and
Analysis [2.13, 2.17]

One of the most basic issues in system theory is the stability of feedback interconnections.
Four of the most fundamental results concerning stability of feedback systems are the small gain,
positivity, circle and Popov theorems. In a recent paper [6.1], each result was specialized to the
problem of robust stability involving linear uncertainty, and a Lyapunov function framework was
established providing connections between these classical results and robust stability via state
space methods. As shown in [6.1], the main difference between the small gain, positivity, and
circle theorems versus the Popov theorem is that the former results guarantee robustness with
respect to arbitrarily time-varying uncertainty while the latter does not. This is not surprising
since the Lyapunov function foundation of the small gain, positivity, and circle theorems is based
upon conventional or “fixed” quadratic Lyapunov functions which guarantee stability with respect
to arbitrarily time-varying perturbations. Since time-varying parameter variations can destabilize
a system even when the parameter variations are confined to a region in which constant variations
are nondestabilizing, a feedback controller designed for time-varying parameter variations may

unnecessarily sacrifice performance when the uncertain real parameters are constant.

Whereas the small gain, positivity and circle results are based upon fixed quadratic Lyapunov
functions, the Popov result is based upon a quadratic Lyapunov function that is a function of the
parametric uncertainty. Thus, in effect, the Popov result guarantees stability by means of a family
of Lyapunov functions. For robust stability, this situation corresponds to the construction of a
parameter-dependent quadratic Lyapunov function [6.2]. A key aspect of this approach is the fact
that it does not apply to arbitrarily time-varying uncertainties, which renders it less conservative
than fixed quadratic Lyapunov functions (such as the small gain, positivity, and circle results) in
the presence of constant real parameter uncertainty. An immediate application of the parameter-
dependent Lyapunov function framework of [6.2] is the reinterpretation and generalization of the
classical Popov criterion as a parameter-dependent Lyapunov function for constant linear paramet-

ric uncertainty.

From a theoretical perspective, an important contribution of this research is the unification of
the circle and Popov criteria via a parameter-dependent Lyapunov function framework that yields '
both results as special cases. The unification of the circle and Popov criteria per se is not new
to this research. Indeed, a parablola test which accomplishes this goal was originally developed in

[6.3]) and further studied in [64] However these results are confined to SISO systems and rely on
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graphical techniques. This research thus accomplished four specific goals:

1.

It provided a general framework for the parabola test in terms of parameter-dependent Lya-

punov functions in the spirit of [6.2];

It developed a state space characterization of the parabola test via Riccati equations;

It developed a multivariable extension of the parabola test for parametric uncertainty; and
It used these results to develop equations for robust controller synthesis.

One of the limitations of Popov theory is that it restricts the uncertainty to vary in only one

direction (that is, positive or negative). The parabola test, however, allows the uncertainty to vary

in both directions and hence can potentially lead to analysis and design tools that are more easily

applied than those resulting from Popov theory. Hence, this research could result in robustness

analysis tools that are more useful to the practicing controls engineer.

6.1

6.2

6.3

6.4
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7. Application of Popov Robustness Tests to a Benchmark Problem
[2.4, 2.5, 2.18, 2.19]

Over the past several years, significant attention has been devoted to the use of small gain(or
H,o ) tests for robustness analysis. However, it is well known that these tests can be very conservative
since in the frequency domain the small gain test characterizes uncertainty with bounded gain but
arbitrary phase while in the time domain the small gain test characterizes uncertainty with arbitrary
time variation. This conservatism has led to the search for more accurate robustness tests. In
particular, researchers have sought tests that allow frequency domain uncertainty characterization
to include phase bounding or time domain uncertainty characterization to include restrictions on

the allowable time variations.

As discussed in the previous section, the small gain, circle and positivity tests are based upon
conventional or “fixed” quadratic Lyapunov functions which guarantee stability with respect to
arbitrarily time-varying perturbations. In contrast, the Popov test, based on a parameter dependent

Lyapunov function, restricts the allowable time variation of the perturbation.

In this research we used a benchmark problem to compare the Popov test with the small gain
and positivity tests. Each of the stability tests have graphical interpretations for the case of one
block, scalar uncertainty. These graphical tests were applied. However, the state space tests that are
based on Riccati equations are emphasized since they extend to more general forms of uncertainty
and also allow the development of robust H; performance bounds. Homotopy algorithms were
developed for the special case of one-block, scalar uncertainty. The algorithm for Popov analysis
additionally required that a certain product ( CoBo) related to the uncertainty characterization equal
zero. This condition does hold for the benchmark problem under consideration. The robustness
tests were applied to analyze a feedback system for the benchmark system in which the controller

was designed using the Maximum Entropy approach.

The open-loop benchmark system is the two-mass/spring system shown in Figure 7.1. The
stiffness k is uncertain. A control force acts on body 1, and the position of body 2 is measured,
resulting in a noncolocated control problem. Here, we consider Controller #1 of [7.1] which was
designed for Problem #1 of a benchmark problem [7.2] using the Maximum Entropy robust control

design technique. The controller was designed so that the closed-loop system is robust with respect
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Figure 7.1. The benchmark system for robust control design and analysis is a two-mass/spring system
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to perturbations in the nominal value of the stiffness k (i.e., kK = knom). The exact stiflness stability

region over which the system will remain stable was computed by a simple search and is given by
0.4458 < k < 2.0661.

Next, using a graphical approach and the state-space Riccati equation approach (implemented via
homotopy algorithms), we apply small gain analysis, positivity analysis, and Popov analysis to
determine the stiffness stability regions predicted by each of these tests. Each of these tests is

related to the previous test and is guaranteed to be less conservative.

When the homotopy algorithms corresponding to the state space tests for small gain, positivity,
and Popov analysis were applied to the benchmark problem, the performance curves shown in Figure
7.2 resulted. As expected, Popov analysis yielded less conservative results than the positivity and
small gain tests. The robust stability bounds Ak (positive) and Ak (negative) obtained from the
state space tests were identical to those obtained from the frequency domain tests. In fact, the
stability region predicted by the Popov test was identical to the true stability region!
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8. A Numerical Algorithm for Optimal Popov Controller Analysis and Appli-
cations to a Structural Testbed [2.7, 2.21]

One of the most important aspects of the control design and evaluation process is the analysis of
feedback systems for robust stability and performance. Signiﬁcant attention has been devoted over
the past several years to the use of bounded gain and other norm-based methods for these analysis
tests. Unfortunately, due to their dependence on norms, these tests exclude the phase information
on the system uncertainties and can be very conservative for systems with constant real parameter
errors. A technique to reduce the conservatism inherent in fixed quadratic Lyapunov functions has
recently been introduced (see, e.g., [2.3, 2.17]). The approach considers Lyapunov functions that

explicitly contain the uncertain parameters, and thus restrict the allowable time-variation of the

uncertainties.

The purpose of this research is to combine several recent advances on Popov controller analysis
and synthesis. Refs. [2.5, 2.19] have recently demonstrated that the state space Popov analysis
criterion is much less conservative than similar positive real and small gain (Ho ) criteria. In this
research, we extend the earlier work by considering systems with multiple uncertainties that have
both upper and lower sector bounds. The stability criterion is developed using a more general

stability multiplier
W(s)=H + Ns, H>0 N2>0

The algorithm of [2.5, 2.19] was developed for H = I. The new algorithm also considers the case
CoBy # 0. The simplifying assumptions in [2.5, 2.19] that CoBy = 0 is only valid for a very

restricted set of parameter uncertainties.

The optimal Popov analysis algorithm is demonstrated using several robust control designs that
were developed for the Middeck Active Control Experiment (MACE) (see Figure 8.1) located at
the Massachusetts Institute of Technology. Figure 8.2 shows the curves of robust ( H,) performance
vs. guaranteed robust stability for an LQG controller, a Maximum Entropy (ME) controller and
two mulbtiple model (MM) controllers. Each of the controllers had at least one unstable eigenvalue
except the “stable MM.” Figure 8.3 shows the improvement in the stable MM design when it was

refined using Popov controller synthesis (PCS).

Harris Corporation 29 January 1995 00051.tex




Suspension Cable l

Strain Gages

&
g

D=

‘%\Secondary Payload

Rate Gyro Platform
1.7m /

Primary Payload

Figure 8.1. Middeck Active Control Experiment (MACE) Test Article

Harris Corporation 30 January 1995 00051.tex




|
]
-11H | -
' v
. | / / '
-12H LQG | : ) d:
- : ) ,
¢ | )
51 , | |
: i
g -14- et |
; ‘ ..................
z.ast |
k3
2 ’.a.—-
5-1&, ..... |
-17 stable MM ]
b - = = — unstable MM
-18 e ME -
" SWLOG
-19_ |
-20 l : l 1 1 L t
0 0.02 0.04 0.06 0.08 0.1 012 —

Guaranteed uncertainty bound

Figure 8.2. Robust Stability and Performance Analysis Using Several Controllers for MACE

(Symbols x indicate nominal H, performance for each design)

Harris Corporation 31 January 1995 00051.tex




LiF -
-12+ A
/'/ -
5-13" /_// =
) e
= s
.13t ' .
=
5 -
Z -15p
b
2 .16} .
5
&7 .
-18F —~———— stable MM =
4 - === PCS
-19F -
_-,\0 ] 1 PO | i 1 1 '
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Guaranteed uncertainty bound

Figure 8.3. Robustness Improvements Achieved by Popov Controller Synthesis

Harris Corporation 32 January 1995 00051.tex



9. Generalized Fixed-Structure Optimality Conditions for H, Optimal Control
[2.8, 2.22]

One of the foundational results in modern control theory is the vdevelopment of a charac-
terization of the globally optimal H; controller via a.lgebraic Riccati equations. This result has
traditionally been derived via the Calculus of Variations or the Maximum Principle in conjunction
with the Separation Principle. Unfortunately, the optimal H; or LQG (Linear-Quadratic-Gaussian)
controller has dimension equal to that of the plant (although it may have minimal dimension which
is less than that of the plant). This has motivated the search for optimal reduced-order controllers

(i.e., controllers that have dimension less than that of the plant).

Because the Calculus of Variations and the Maximum Principle characterize globally optimal
solutions, these traditional methods for deriving the LQG result do not extend to the development
of characterizations of optimal reduced-order controllers. Hence, researchers have developed the
optimization methods that allow the dimension and structure of the controller to be constrained
a priori. These methods are usually based on Lagrange multiplier theory and will be called here
“fixed-structure approaches.” The “optimal projection” characterization of the necessary conditions
for optimal reduced-order control was derived using a fixed-structure approach and yields the
standard LQG regulator and observer Riccati equations when the dimension of the controller is
specified to be equal to the dimension of the plant. However, the original optimal projection results
and numerous extensions were derived by a priori assuming that the controller is minimal. This is

a limiting assumption since it is known that even an LQG controller is not always minimal.

This research develops optimality conditions that are derived without assuming the minimality
of the compensator. The results are specialized to the case in which the compensator is constrained
to have the dimension of the plant. It is shown that even when compensator minimality is not
assumed, fixed-structure theory is able to derive the LQG Riccati equations. It is also shown that
there exist sets of coupled Riccati and Lyapunov equations that are identical in form to the optimal
projection equations for reduced-order control but actually characterize extremals to the full-order
compensation problem. This leads to a new interpretation of an optimal projection controller. In
particular, an optimal projection controller is a projection, described by a projection matrix u, of

a “central” extremal to the H, optimal full-order compensation problem.

These latter results are used to discuss suboptimal projection methods that are able to produce

minimal order realizations of nonminimal LQG compensators. For this special case, the similarity
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transformations relating the projection matrix v used by these suboptimal methods to the projection
matrix g and the optimal projection matrix 7 from the standard optimal projection theory are
explicitly defined. If the observability and controllability grammians of the nonminimal LQG

compensator satisfy certain rank conditions, the three projection matrices are proved to be identical

(ie., 7=p=v).
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10. Construction of Low Authority, Nearly Non- Minimal LQG Compensators
for Reduced-Order Control Design [2.9, 2.23]

The development of linear-quadratic-guassian (LQG) theory was a major breakthrough in mod-
ern control theory since it provides a systematic way to synthesize high performance controllers
for nominal models of complex, multi-input multi-output systems. However, as discussed above,
one of the well known deficiencies of an LQG compensator is that its minimal dimension is usu-
ally equal to the dimension of the design plant. This has led to the development of techniques to
directly synthesize optimal, reduced-order controllers and techniques to synthesize reduced-order

approximations of the optimal full-order compensator (i.e., controller reduction methods).

The controller reduction methods almost always yield suboptimal (and sometimes destabilizing)
reduced-order control laws since an optimal reduced-order controller is not usually a direct function
of the parameters used to compute or describe the optimal full-order controller. Nevertheless, these
methods are computationally inexpensive and sometimes do yield high performing and even nearly
optimal control laws. An observation that holds true about most of these methods is that they

tend to work best at low control authority. However, to date no rigorous explanation has been

presented to explain this phenomenon.

One of the purposes of this paper is to provide a partial explanation as to why the suboptimal
projection methods tend to work at low control authority. The discussion here focuses on stable
systems. It is shown that if the state weighing matrix R; or disturbance intensity (or covariance
for discrete systems) Vi has a specific structure in a basis in which the A matrix is upper or
lower block triangular, respectively, then, as illustrated by Figure 8.1, at low control authority
the corresponding LQG compensator is nearly nonminimal and can hence be easily reduced to a
nearly optimal reduced-order controller. The conditions presented for Ry and V; often are satisfied
or nearly satisfied in practice. Hence, for stable systems the results proved in this research do
offer one explanation of why suboptimal controller reduction methods often provide nearly optimal
control laws at low authority. If these conditions are not satisfied, then, as illustrated by Figure
10.2, at low control authority the LQG compensator is not necessarily nearly nonminimal. The
basic results can be used as guidelines for choosing R; and V) such that suboptimal controller

reduction methods yield “good” reduced-order controllers.
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Suboptimal controller reduction methods can be used to initialize algorithms for synthesizing
reduced-order controllers. Of particular interest are continuation and homotopy algorithms since
they are based on allowing the plant and weights defining an optimization problem to vary as a
function of the homotopy parameter A € [0,1]. These homotopy algorithms rely on choosing the
initial plant and weights so that the corresponding LQG compensator is easily reduced to a nearly
optimal reduced-order compensator of the desired dimensions. Hence, the results developed in this
research provide some rigorous guidelines for initializing these algorithms. Note that the restriction
to stable systems is not necessarily limiting since the freedom involved in defining a continuation

or homotopy map allows this assumption to be satisfied. However, future work will focus on theory

that directly applies to unstable systems.
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11. Continuation Algorithms for H, Optimal Reduced-Order Modeling and
Control Using the Optimal Projection Equations [2.10, 2.11, 2.24, 2.25]

Most algorithms to date for H, optimal reduced-order modeling and control are descent al-
gorithms, such that at each iteration they are guaranteed to decrease the cost. An exception has
been the continuation and homotopy algorithms of [11.1-11.6). These algorithms are not descent
methods and since the shortest path from a given initial condition to an optimal solution is not
necessarily a descent path, these algorithms have the potential to be more efficient than the descent
methods. In addition, when a physical continuation or homotopy path is used, the reduced-order
model or controller at each point along the homotopy path is guaranteed to be a meaningful model
or controller for the physical system. Under mild conditions, the homotopy paths of the algorithms

developed in [11.5, 11.6] are guaranteed to exist.

A common feature of the continuation and homotopy algorithms of [11.4-11.6] is that they are
based directly on the gradient expressions. In these schemes, the parameter vector p represents the
reduced-order model or controller. In order to keep the dimensionality of p relatively small and
to avoid high order singularities along the homotopy path, minimal-order parameterizations of the
reduced-order model or controller were considered. However, since the assumed parameterization
may fail to exist or lead to ill-conditioning related to the insistence on using the minimal number
of parameters, these resulting algorithms sometimes fail or have very poor convergence properties.
On alternative approach proposed in [11.4-11.6] is to develop an algorithm that utilizes several
minimal parameter homotopies and is capable of switching to an alternative parameterization if ill-
conditioning is encountered with the current parameterization. A second approach is to develop

algorithms directly based on the optimal projection equations.

Continunation and homotopy algorithms based on the optimal projection equations are given
in [11.1-11.3]. However, the homotopy algorithms of [11.2, 11.3] suffer from the curse of large
dimensionality. The continuation algorithm of [11.1] used a very crude path following scheme in
which the coupled Riccati and Lyapunov equations comprising the optimal projection equations
for reduced-order controller design were not updated simultaneously. This caused the algorithm to

exhibit poor convergence properties, especially as the control authority was increased.

This research uses the optimal projection equations to develop new continuation algorithms for
H, optimal, reduced-order modeling and control. These algorithms avoid the large dimensionality

of [11.2, 11.3] by using the results of [11.7] to efficiently solve sets of linearly coupled Lyapunov
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equations whose solutions describe either the tangent vectors or Newton corrections. The poor

convergence properties of [11.1] are avoided by simultaneously updating each of the optimal pro-

jection equations. The new continuation algorithm for H; optimal reduced-order controller design

produced the optimal curves for the benchmark “four disk problem” which are shown in Figure

11.1.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

Note that the design model was 8th order. .
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Optimal Reduced Order Controllers for the Four Disk Problem
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Figure 11.1. Comparison of the Performance Curves for Various Order Controllers for an 8%

Order Four-Disk Plant
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12. Analysis and Synthesis with the Complex Structured Singular Value Using
Fixed Structure D-Scales [2.12, 2.13, 2.26—2.28]

A fundamental problem in control engineering is the design of feedback controllers that are
insensitive to errors in the control design model. The characterization of the uncertainty occurs
somewhere between two extremes, parametric and nonparametric uncertainty. Parametric uncer-
tainty here describes errors that can be translated into errors in the elements of some time-invariant,
state space representation of the design model. An example of this type of uncertainty would be
errors in the mass or stiffness parameters of a finite element model. On the other hand, nonpara-
metric uncertainty is best viewed in the frequency domain and describes errors that have bounded
gain but arbitrary phase. Of course, there are types of uncertainty that do not fit succinctly into
either of these two categories (e.g., state space uncertainty in which some time variation is allowed,
or frequency domain uncertainty in which the phase is also bounded). Hence in practice, there are

“shades of grey” when describing model uncertainty.

This research considers control design for nonparametric uncertainty. This type of uncertainty
can be incorporated into the control design process using the small gain theorem. This theorem
considers only one-block uncertainty. Unfortunately, for many systems the uncertainty occurs
simultaneously in disparate parts. For example, in a model of a flexible structure, the errors
might exist in the sensor and actuater dynamics in addition to errors which exist due to unmodeled
dynamics. When uncertainty is present in the system in various places, control synthesis based solely
on the small gain theorem may yield conservative control laws since the model of the uncertainty
will then take into account errors that are not in the true uncertainty set. This conservatism

motivated the development of the structured singular value.

The standard method for controller synthesis based on the structured singular value is usually
referred to as “D — K iteration.” This process begins by fixing the D-scales defining an upper bound
on the structured singular value (usually to D = I) and designing an H., optimal controller K.
Then with K fixed the D-scale magnitudes are optimized over (theoretically) all frequencies. Some
6ptimal curve fit is then needed to find rational transfer functions that approximate the optimal
D-scale magnitude plots (vs. frequency). Then, with the D-scales fixed to their rational transfer
function approximations another H, controller K is designed. The D-scales are then reoptimized

(with K fixed). This process continues until convergence or until an acceptable controller is found.

Standard D — K iteration with curve fitting has the advantage that at each iteration, a convex
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optimization problem is solved, although the overall design process is not convex. However, this
process also has serious drawbacks. First, there may not be a rational transfer function that
corresponds to the optimal D-scale magnitude plot (vs. frequency). Even if such a function exists,
it may be of very high order. If a low order transfer function is used, the design process will lead to

a suboptimal controller. In fact, the resulting controller will generally not be the optimal controller

for the D-scale of the given order.

This research develops a method for structured singular value controller synthesis that does
not require curve fitting. In particular, the designer is allowed to a priori constrain the D-scales
to be constant. The approach here is based on recent results in mixed norm H3/H, theory. As
illustrated by Figure 12.1, for D-scales of a given order, the resultant controllers can have better

robustness properties than those obtained using standard D — K iteration and curve fitting.
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Appendix A:

Maximum Entropy-Type Lyapunov Functions
for Robust Stability and Performance Analysis
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Abstract: We present two Lyapunov functions that ensure the unconditional stability and robust performance of a modal system with
uncertain damped natural frequency. Each Lyapunov function involves the sum of two matrices, the first being the solution to the
so-called maximum-entropy equation and the second being a constant auxiliary portion. The significant feature of these Lyapunov
functions is that the guaranteed robust stability region is independent of the weighting matrix, while the performance bounds are
relativelv tight compared to alternative approaches. Thus, these Lyapunov functions are less conservative than standard bounds that
tend to be highly sensitive to the choice of state space basis.
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1. Introduction

The maximum-entropy approach to robust control was specifically developed to address the problem of
modal uncertainty in flexible structures [2,5,6,18,19]. The rationale for this approach was based upon
insights from the statistical analysis of lightly damped structures [20]. Despite favorable comparisons to
other approaches [9, 10,12, 13] and experimental application [11], the basis and meaning of the approach
remain mostly empirical and largely obscure. The purpose of this paper is to make significant progress in
developing a rigorous foundation for this approach. '

Besides the statistical modal analysis techniques of [20], a variety of formulations have been put forth for
justifying the maximum-entropy approach. To reproduce certain covariance phenomena of uncertain
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multimodal systems (decorrelation, incoherence, and equipartition; see [20]), a multiplicative white-noise
model was invoked [18,19]. The specific model chosen was interpreted in the sense of Stratonovich, thus
entailing a critical correction term in the covariance equation due to the conversion from Stratonovich to Ito
calculus. The Stratonovich model was itself based upon a limiting process in which the parameter entropy
increased, thus suggesting the name “maximum-entropy” control. White-noise models as a basis for robust
control are discussed in [1].

An alternative justification for the maximum-entropy model was given in [14] in terms of positive real
transfer functions. This attempt was motivated by the observation that in the limit of high modal frequency
uncertainty the maximum-entropy controller assumed a rate dissipative structure [18, 19]. An alternative
attempt to justify the maximum-entropy model was given in [17], where a covariance averaging approach
[16] was used to show that if the state covariance is averaged over uncertain modal frequencies possessing
a Cauchy distribution, then the resulting averaged covariance satisfies the maximum-entropy covariance
model.

Although the various formulations of maximum-entropy theory lend considerable insight into the nature
of the approach, there remains a significant gap between this approach and more conventional techniques.
such as H . theory. The missing link, in our opinion, is the lack of a Lyapunov function that guarantees the
robust stability of the closed-loop control system. In this regard it was long suspected that such a Lyapunov
function would be unconventional, that is, unlike those arising in H, theory. This view arose from the fact
that the maximum-entropy controllers were often robust to large perturbations in the damped natural
frequencies, that is, the imaginary part of the eigenvalues. Such perturbations are highly structured. and thus
are often treated conservatively by conventional small-gain-type bounds.

The goal of the present paper is to provide a Lyapunov function basis for the maximum-entropy
covariance model for the case of modal frequency uncertainty. In fact, in this special case, we provide two
alternative Lyapunov functions along with the corresponding performance bounds. Each Lyapunov function
involves the sum of two matrices, the first being the solution to the maximum-entropy equation (see equation
(22)) and the second being a constant auxiliary portion. This construction is similar to the parameter-
dependent Lyapunov function technique developed in [15] except that in the present paper the auxiliary
portion is constant, that is, independent of the uncertainty.

The maximum-entropy equation (22) differs fundamentally from alternative robustness tests such as those
given in [3,4]. Specifically, whereas the modified Lyapunov functions in [3] involve additional nonnegative-
definite terms in the Lyapunov equation, the maximum-entropy equation entails an indefinite modification.
This distinction appears to play a critical role with respect to the way in which the maximum-entropy
equation deals with the change in basis induced by the input and weighting matrices.

While this paper potentially provides a Lyapunov function foundation for the maximum-entropy control
approach, our results are limited to open-loop analysis. Future research will focus on robust stability of the '
closed-loop system for the controllers given in [2,5,6.9-13,18-20]. Furthermore, although the techniques
used to construct the Lyapunov functions for the maximum-entropy equation are limited to modal frequency
uncertainty, they appear to be generalizable to larger classes of uncertainty. Nevertheless, for structures with
modal frequency uncertainty [2, 5, 6, 9-13, 18, 19], these results have practical ramifications.

2. Robust stability and performance problems
Let # = R"*" denote a set of perturbations 44 of a given nominal dynamics matrix AeR"*". It is assumed

that A4 is asymptotically stable and that Oe%.
Robust stability problem. Determine whether the linear system

X(t)=(A + 44)x(t), te[0, ), (N

is asymptotically stable for all 44e%.
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Robust performance problem. For the disturbed linear system
x(t)y = (A + 4A)x(t) + Dw(t), te[O0, ), (2)
z(r) = Ex(t), (3)
where w(-) is a zero-mean d-dimensional white-noise signal with intensity /,, determine a performance bound
B satisfying
7 (@) sup limsup E{|lz()13} < 6. | @

For convenience, define the n x n nonnegative-definite matrices R ETE and V2 DD'. The following
result is immediate. For a proof, see [3].

Lemma 2.1. Suppose A + AA is asymptotically stable for all AAe. Then
T () = sup tr(Q,4R) = sup tr(P, V), (5

Jdev JAev

where Q,,eR"*" and P,,eR"*" are the unique, nonnegative-definite solutions to

0=(A+ 4A4)Q,  + Qus(A+ 44" + V (6)
and

0=(A+ 4A)P,, + P,4(A + 44) + R. , . (7)

Conditions for robust stability and robust performance are developed in the following theorem. Let 4™
and " denote the sets of n x n nonnegative-definite and symmetric matrices, respectively.

Theorem 2.2. Let Qy: A" — &", and suppose there exists Pe V" satisfying

0=A"P+ PA+ Qy(P)+ R. (8)
Furthermore, let Py: % — %" and Roe¥" be such that Ry < R,

AATP + PAA < Q(P,44) + Ry, AAe, 9)
and

P+ Py(44) >0, AAe¥, (10)
where

Q(P,4A4) 2 Qo(P) — [(A + 4A)T Py(44) -|;-P0“(AA)(A + 44)]. (11
Then

(R— Ry, A+ 4A4), AA€, (12)
is detectable if and only if

A+ 4A, AAen, (13)
is asymptotically stable. In this case, the following statements are true. If y < 1 is such that Ry < yR. then

P, < IL_})(P + Po(44)), AAe, (14)
where P,, satisfies (7), and

T ) < I i ; [tr (PV) + ds:xép” tr(Po(4A4)V)]. (15)
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In addition, if there exists Poe & such that
Py(4A) < Py, (16)

then

T <

7 __ytr[(P-i-Fo)V]. (17)

Proof. Note that, for all 44, (8) is equivalent to
0=(A+ AA)(P + Py(44)) + (P + Po(4A))(A + 44) + Qo(P) + R
— [(A + dA)TPo(4A) + Po(4A)(A + AA)] — (AATP + P 4A)
=(A + AA)T(P + Po(4A4)) + (P + Po(4A))(A + 4A) + R — Ry + R}, (18)
where
Ry 2 Qo(P) + Ro — [(4 + AA)T Po(4A) + Po(4A)(A + 44)] — (AATP + P 44)
= Q(P,4A4) + R, — (4ATP + P 44).

Hence, (18) has a solution Pe.¥"" for all 44€%. Thus, if the detectability condition (12) holds for all 44e,
then it follows from [21, Theorem 3.6] that (R — Rq + Ry, A + AA)is detectable, 44e%. It now follows from
(18) and [21,Lemma 12.2] that A + 4A4 is asymptotically stable, 44e%. Conversely, if A + 44 is asymp-
totically stable for all 44e%, then (12) is immediate.

Now, subtracting (1 — y)-(7) from (18) yields

0=(A4+ AA)T(P + Py(4A) — (1 — 9) Pyy) + (P + Po(dA) — (1 — 9) Py )(A + 4A)
+ Ry — Ry + 7R, AAew, (19)
or, since A + 4A is asymptotically stable for all A4e% and R, < yR, (19) implies that, for all 44e%,

P+ Py(44) — (1 — ) Py ='[ e1A+AA;Tr [R'o + R — Ro]e"‘”’”'dt
0

\%

x<
- T -~
J‘ e(A = 4A) IR’O e(A 4 J‘.l)ldt
0

v

0,

which implies (14).
Next, using (14), it follows from (5) that

1
7 () = sup tr(D"P,, D) < [ sup tr[DT(P + Po(4A))D]

Jdev 7 ddew

_ 1—1—[tr(PV) + sup tr (Po(44) V)},

-7 Adew

which yields (15). Furthermore, using (16) it follows that

T < 1—_1_—y|:tr(PV) + sup tr(Po(AA)V)] <! [tr (PV) + tr (P, V)]

dAe¥ 1—y

i _ytr[(P+ P)V]. O
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Remark 2.3. Theorem 2.2 is a generalization of Theorem 3.1 of [15]. Specifically, the bound in [15] is
required to hold for all nonnegative-definite matrices, whereas in Theorem 2.2 equation (9) need only hold for
the solution P of (8). Furthermore, in [15], Ro = 0.

Remark 2.4. Inequality (9) is equivalent to
(A + AA)T(P + Py(4A4)) + (P + Po(44))(A + dA) + R— Ry <0,

which shows that V(x) = xT(P + Py(44))x is a Lyapunov function corresponding to A + 4A. In construct-
ing this Lyapunov function, the matrix P can be viewed as a predictor term, Po(4A) provides a corrector term.
and Py = P + Py(4A) is the total Lyapunov matrix.

Remark 2.5. If P,(4A) is independent of 44, then by choosing P, = Py(4A4) it follows that (15) is identical to
(17).

3. Application to the maximum-entropy covariance model
Now we specialize to the case in which % is given by

r
xS {AAER"”: A=Y 6iA, ol <6, i=1,... ,r}, (20)
i=1

where §; > 0 and the matrices 4;eR"*", which represent the uncertainty structure, are the given skew-
symmetric matrices, that is, 4, + A7 =0, i=1,...,r. In addition, we assume that 4 + AT < 0. This
formulation can be viewed as the representation of a dissipative system (such as a flexible structure) with
energy-conserving perturbations. This property can be seen by means of the Lyapunov function ¥(x) = x"x
whose decay rate is independent of ;. Thus, A + 44 is uniformly asymptotically stable even for arbitrarily
time-varying o;(t). For simplicity, however, we confine our analysis to constant parameter uncertainty. In
addition, although the system is robustly stable for time-varying parameter uncertainties, the performance
bounds we obtain via Theorem 2.2 are valid only for the case of constant parameter uncertainty.

We now introduce a specific choice of Q,(P) that is motivated by the maximum-entropy covariance model.
Specifically, as in [18] we choose

Qo(P)= Y 623 AP + AT PA; + 1 PA}). (21)
i=1

First we prove that with this choice of 24(P) equation (8) hés a unique solution. Then we show that, when
r = 1, equation (8) has an asymptotic solution for §, —co.

Proposition 3.1. Assume that A+ AT <0, A;+ AT =0,and 6; >0,i=1,...,r. Then there exists a unique
matrix PeR"*" satisfying

0=A"P+PA+ Y S}(GA?"P + ATPA; + 3PA}) + R. (22)
i=1

Furthermore, P is nonnegative-definite.

Proof. Applying the “vec” operator [7] to (22) yields
0= /TvecP + vecR, (23)

where

ALUDA)+ T 154D 4

i=1
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and @ and later ® denote Kronecker sum and product, respectively. Since A + AT < 0, it follows that
(ADA) + (AP AT =4 + AT)®(A + A") < 0. In addition, the assumption that 4; is skew-symmetric
implies that A;® A, is also skew-symmetric and thus (4;@® A4)* <0,i=1....,r. Thus, &/ + &/ <0, which
implies that & is asymptotically stable. Thus, (23) yields P = vec™! (— o/ “Tvec R). This proves existence
and uniqueness.

Next, we show that P is nonnegative-definite. Note that since — &/ T j;‘ e”™ dr, we can write

P =vec™! (f e’ vec R dt). : (24)

0

After some manipulation (24) can be written as

€ r T r
P = vec“(f exp(r[z (é + 367 A > @® Z ( + 367 A? > + Y %5,-2(A,-®A,-)T}>vecRdt>.
0 i=1 i=1

(25)
Now, using the exponential product formula it follows that
®x t r A AT
P= vec“(J. lim [exp(—[ y ( + 30} A”)@ y < + 167 A,ZT>>:|>
0 m-x nif = i=1 r
r 5,2[ T T m
x [] exp %(A‘- ®AT)| vecRdt]. (26)
i=1 .

For simplicity, we assume r = 1. If r > 1 only minor modifications are needed. First fix m and let Ry, £ R;
define the series Z(;, R;,j=0,1,...,m—1,by

© 1 52
VeC Zj4 1, (1) £ e@iU2m(41® 40T yec R (1) = vec Z T <2 > AT R (1) A%,

t 62 H S\
vec Ryj+1y(t )-exp A+—= 5 Al @l A +7A1 vee Zj+1)(t)

& LY\ ‘ &,
= vecexp| A+ —= 3 A3 Z(,-H,(z)exp A+ — 7 A

It is obvious that both Z;(t) and R;(t) are nonnegative-definite matrices for all j=0,1,...,m — 1 and
t > 0. Finally, since m is arbitrary, it can be shown that

o]

m-s o o m—x

Next we show that (22) with r = 1 has an asymptotic solution for 6, — oc. First, we need the following
definition and lemma.

Definition 3.2. For FeR"*", the smallest nonnegative integer k such that rank (F*) = rank (F**!)is called the
index of F and is denoted by Ind (F) [8].

Remark 3.3. If F is invertible, Ind (F) = 0. Also Ind (0) = 1. We adopt the convention that 0° = 1 [8].

Definition 3.4. A matrix FeR"*"is called EP [8] if either F is invertible or there exists an orthogonal matrix
UeR" " and an invertible matrix F,eR™*™, where m < n, such that

— F, 0 T
F—-UI:O O]U.
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Remark 3.5. If F is EP, then Ind (F) < 1, and the group inverse F* of F is given by [8]

Fit 07, .
‘“ = T,
F u[o 0]

Lemma 3.6. Let A, BeR"*", where A + AT < 0 and B is an EP matrix. Then
Ind (4B) = Ind (B). ‘ (27

Proof. Since B is an EP matrix, Remark 3.5 implies that Ind (B) < 1. Hence, we consider two cases.

(1) Suppose Ind (B) = 0, so that B is invertible. Since 4 + AT < 0, it follows that A is asymptotically stable
and hence invertible. Therefore, AB is invertible and thus Ind (AB) = 0.

(2) Suppose Ind (B) = 1, and let rank (B) = n — r, where r > 1. Since B is an EP matrix, there exists an
orthogonal matrix U and a matrix Dy such that B = UDgUT, where

DB=|:BO‘ 3}, B,eR™="x®=n det(B,) # 0.

Since rank (AB) = n — r, it suffices to show that the zero eigenvalue of AB has multiplicity r.
By writing UTAU in the form

A’%UTAU=[ e ,‘2],
AZI A22
where A}, eR"~ =N 4" eR™", A1,eR"™7*" 45,eR™"™", we have
WBy 0
UTAUDy=|" 10 |
’ [ 2B 0
Consequently, the characteristic polynomial of 4B is

det (il — AB) = det (A] — U(UT AU D) UT) = det (Al — UT AU Dy)

= det [':-In—r‘—AlllBl 0

— A3 B, ;.I,:|=/' det(4l,-, — A}, By). (28)

Equation (28) implies that the zero eigenvalue of AB has at least multiplicity r.

The final step is to show that A, B, has no zero eigenvalue or, equivalently, det (4}, B,) # 0. Since
A+ AT <0, it follows that UT(4 + AT)U < 0, that is, A’ + 4’7 < 0. Thus, 4}, + (41,)" < 0, which implies
that A}, is asymptotically stable. Therefore, we have det(4);) # 0. Noting

det(A'“Bl)=det( ,11)det(Bl) #0

completes the proof. [
For convenience, we define
AL ATQAT) HAT@AT). v (29)
Lemma 3.7. Let A, A,eR"™*" where A + AT < 0 and A, + AT = 0. Then Ind (1) = 1.

Proof. Since A4, is skew-symmetric, it follows that A,@A4, is also skew-symmetric. Thus, (4,®A4,)? is
symmetric (actually, it is negative-semidefinite) and hence is EP. In addition, it is obvious that 4,@A4, is
singular. Thus, Ind (4]@®A7)? = 1. Furthermore, since 4 + AT < 0 implies (A® A4) + (AT®AT) < 0 and
equivalently implies (A®A)~! + (AT@®AT)™! <0, it follows from Lemma 3.6 that Ind (4) = 1. [
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We are now ready to prove the existence of an asymptotic solution of equation (8) when r = 1. For
notational convenience, we replace 41/2 by 2.

Proposition 3.8. Let A4, 4,eR"*", Re# "and 2 > 0. Furthermore, assume that A + AT< 0,4, + AT=0,and
let P,e.4"" be the unique, nonnegative-definite solution to

0= AP + PA + a(A?"P + 2ATPA, + PA?) + R. (30)
Then P, £ lim,. . P, exists and is given by

P, =vec ! [(I — AA*)(AT@AT)" ! (- vec R)]. (31)

Proof. Applying the vec operator to equation (30) yields
0=[(AT@®A") + x(AT@ A])*Jvec P + vecR,

so that
vecP =[I + ::tA]"(AT.@-)AT)“1 (— vecR),

and we can write P, as

vec P, = lim (I + aA) " (AT@A")" ! (— vecR)

a— X

= lim [1(—1—1 + A>:I_1 (AT@AT)"! (- vecR)

k- 2ade x

= lim z(zI + A)"* (AT@AT)" ! (— vecR).

Faad o}

Now since Ind (4) = 1, it follows from [§, Theorem 7.6.2] that the above limit exists and is given by
vecP,. = (I — AA*)(AT@AT)~ ! (- vec R), which yields (31). O

For the following result, define the commutator [F,G] £ FG — GF.

Lemma 3.9. Let A, A,eR"*", ReA"". Furthermore, suppose that A + AT <0, 4, + AT =0, and let P_e A"
be given by (31). Then P satisfies

[AT,P.]=0. (32)

Proof. Since A4, is skew-symmetric, we have
vec[AT, P, ] = vec(ATP, + P, A,) = (AT® AT)vec P
=(A1@ AU — A1*)(AT@AT)™'(— vecR), (33)

where A is defined by (29). Since, by Lemma 3.7, Ind (A4) = 1, it follows from Remark 3.5 that A and A* can be
expressed in the form

c 0 ct o
=V y-! # -1
A I:O O:I , A V|: 0 O:]V ,

where det (C) # 0. Writing V = [V, V,], the identity

| Cc 0
AV =V



D.S. Bernstein et al. / Maximum-entropy-type Lyvapunov functions 81
implies that AV, = 0. Consequently, (4] ® A])*V, =0, and, since Ind(4]@ A]) =1, it follows that
(AT@® AT)V, = 0. Therefore, equation (33) can be written as

1 0

-1 T Ty-1(__
0 O]V )(A @A) " (—vecR)

vec[AT, P.] = (AT@® AI)(! - V[

=(AI@AI)(V|:3 ?] V_1>(AT@AT)_1(——VCCR)

=(A[@ AN [0 V]V 1 (AT@AT)"!(— vecR)

=[0(AT@AN) V.1V 1 (AT@AT) ! (- vecR) = 0.
As aresult, [AT,P,]=0. O

Remark 3.10. If P is symmetric, 4, is skew-symmetric, then it can be shown that [47, [A4T, P,.]] = 0if and
only if [4], P, ] = 0. This fact is of interest since (21) can be written as

Qo(P) = Y 362 [AT.[4], P1].

i=1

Thus, if r=1 and §, >0, then [A4],[A4],P,]1]—0. Note (63/2) [Al,[AT,P,]1]1= —(ATP,+
P,A+ R)= —vec ' [(AT@ AT [(AT®AT) HAT@AT)*]*(AT@® AT) " 'vec R].

4. The choice of corrector term P,

Now we propose a corrector term P, for the case of general skew-symmetric matrices 4,eR"™",i=1,...,r,
where r > 1. For a symmetric matrix B, define |B| £ ./B>.

Proposition 4.1. Assume A + AT <0, A;+ AT =0,and §;>0,i=1,...,r. Let Pe A" satisfy (22) and let

ﬁ 2 maX{Z Hi, — ;'min (P)}: (34)
i=1
where, fori=1,...,r,
Wi £ hmax ((GiI[AT, PT| = 362[ AT, [AT, PID(— A — A1) 1),

If Po(4A) £ B, then (9) and (10) are satisfied with Ry = 0 and U given by (20).

Proof. By substituting Py(4A4) = BI, into (9) with R, = 0 and letting G = ./ — AT — A4, we have
Q(P,4A4) + Ry — (AATP + P4A)

—B(—AT— A)— Y o [AT,P1+ Y 67[AT, [AT, P]]
i=1

i=1 i=

> B(— AT— A)— 3 SI[AF,P1|+ 3 462 [AF,[AT, P1]
i=1 i=1

= G{fl,— Y G-1(G[AT, P1 — 467 [AT, [4T, P11)G-'}G
i=1

> G{fly— Y. huua(G™ (GILAT, P — $57 LT, [AT, PI)G™ 1)1}
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=GBl — ¥ imax((6;1[AT, P]| — 367 [A], [AT,PID(— A — AT) )], }G
i=1

= G{ﬁln - Z ﬂ,],,}G
i=1

>0,
which proves (9). Finally, it is obvious that P + Po(4A4) = P + Bl, 2 in;in(P) I, + BI, > 0, so that (10) is
satisfied. T

Henceforth, we confine our attention to the special case r = 1 and

- ) _ 0 1
s ]

where n > 0 and weR. For notational convenience, we adopt the traditional symbol J for A,. In this case
Qo (P) given by (21) has the form

Qo(P) = 83 (A J2TP + JTPJ + 4PJ?). (36)

Note that JT = — J and J? = — I,, where I, denotes the 2 x 2 identity matrix.

Proposition 4.2. Assume that R is positive-definite and let P satisfy _

0=A"P + PA+ 6?¢J*"P+J'PJ +iPJ*) + R, - (37
let y < 1, and define

Po(4A) & (1 —y)JTPJ — yP, AAeW. (38)
Then (9) and (10) are satisfied with Ry = yR. Furthermore, the performance bound (15) is given by

T W) < tr(V)tr(P). . (39)

Proof. Clearly, (10) is satisfied. Secondly, since
Al =JA, JJT=J"=1,, J'Qu(P)J = — Qy(P),
and P satisfies (37), it follows that
Qo(P) + Ro — [(A + 0,J)"Py + Po(A + 6,J)] —6,(JTP + PJ)
= Qo(P)+ Ry — [(1 = (AP + JTPJA) + 6,(1 — »)(JTJTPJ + JT PJJ)
—(A"P + PA)— 6,y(JTP + PJ)] — 0,(JTP + PJ)
= Qo(P)+ Ry — (1 — 7)JYATP + PA)J + y(ATP + PA)
=Qo(P) + Ro — (1 =) JT(= 20(P) = R)J + 7(— Qo(P) — R)
=Ry —9R + (1 —7)J'RJ
>0.

Finally, we have

T ) < [tr (PV) + tr (P V)] = tr (PV) + tr (JTPIV)

L—»
=tr[P(V + JVIT)] = tr (V) tr (P). O
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Remark 4.3. Note that unlike the parameter-dependent Lyapunov function used in [15] for the Popov
criterion. the auxiliary portion Py(4A4) given by (38) is independent of o,. Therefore, this auxiliary portion
Py(A4) guarantees robust stability with respect to time-varying ¢,(t). This robust stability property was
already shown at the beginning of this section by means of the Lyapunov function V(x) = x"x.

Remark 4.4. Since by Proposition 3.1, equation (37) has a solution for all §, > 0, it follows that robust
stability is guaranteed for arbitrary ¢, that is, not necessarily bounded by 4,.

Remark 4.5. It is easy to show that tr(P)=(1/2n)tr(R) and Pr=P + Py =(l —)(JTPJ + P)
= (1 —y)tr (P)I,. Thus, (39) becomes y

J’(///)S,)itr(V) tr(R). (40)
<n

Thus. the performance bound (39) is independent of §,. Furthermore, it is easy to check that Py satisfies the
equation
0= APy + PrA + J'RJ + R. (41)

We now present an alternative choice of Py(4A4).

Proposition 4.6. Let _ .

P=[P“ Plzil, R=|:R“ R12:|>0
Py, Py Ry, Rj;

satisfv (37) and let Po(4A) & ul,, where

V61 + 6%
u &Y== (Pra = Pu) + 2P1)" (42)

Then (9) and (10) are satisfied with Ry = 0. Furthermore, the performance bound (15) is given by
T ) < tr(PV) + ptr (V). - (43)
Proof. Since P > O0and Py(4A4) > 0, 4A€Z, it follows that (10) is satisfied. Next, to show that (9) is true. recall
that Qy(P) is given by equation (36). Therefore,
Qo(P) — [(A + 6,J) Py + Po(A + 0,J)] — 6,(JTP + PJ)
=0}(—P + JTPJ) — u(A" + A) — 0, (JTP + PJ)
=2unl, + 63(— P+ J'PJ)—6,(JTP + PJ)

=2unl, + Sli/'1 _O}ST
0 I )

_g 2un + Ay 0 st
0 2un + 4,

where i, = — 4, = /o + 6% /(P2 — P1;)? + (2P;,)* are the eigenvalues of 63(— P + JTPJ)—
6,(JTP + PJ) and S is a 2 x 2 orthogonal matrix. Choosing p according to (42) implies that 2un + 4, > 0
and 2un + 4, > 0. Thus, (9) is satisfied. Finally, the performance bound (15) has the form

T U)Ltr[(P+ Po(4A)V] =tr (PV) + putr (V). a
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Remark 4.7. Asin [3,4] the robust performance bounds (40) and (43) are only valid for constant uncertainty
g,.

Before we present a numerical example, we shall illustrate some important aspects of P given by equation
(37). The analytical solution for (37) yields

’1+51

1
Pyy + Ps; = —(R;; + Ry2), Pn—Pzz—‘
2n al 2

—— (Ry; = Ry;) — lez],

o =
2P, =;[E(Rn —Ry)+(n+ OI)Rlz],

where x 2 (n + 5%)2 + w?. For large d,, it is easy to see that

P11“P22 (Rn R,,), 2P12~

2
l
and

. ) - 2P Py, — Py,
lim [AT, P =lm1[ 12 t ]=o,
L ] Py, — Py, 2P,

51-’1 61"’&:‘

which agrees with Lemma 3.9. Hence, P;, — P, and P,, both approach zero as §; — co. These properties
are the so-called equipartition (modal energy equilibration) and incoherence (modal decorrelation) phe-
nomena [17,20]. Since

. 1 Ry, — R;,\?
Y PR [T
3~

the performance bound given by (43) approaches a (finite) constant as §, — cc. Furthermore, since
lim P,, = lim P,, = (1/4n)tr(R), it follows that

41— o 1~

m tr(PV)+ utr (V)= <—1—tr(R) + ﬁ)tr(V).
d1—==x 4”

We now compare the performance bounds given by (39) and (43) for large values of §,. Denoting
Ty =tr(V)tr(P)and 9, = tr(PV) + utr(V), it can be shown using R}, < R,, R,, that

| tr(V R R, — Ry, \? 4
lim 7, — 7, = r(V){ Ry + zz_\/ Ry — Rap +R2, | = ( ). i (R)> (44)
by 2n 2 2 2)7

Finally, if det R = 0, then lim 7, = lim 7, = (1/2n)tr (V) tr (R).

s~ 41—

5. Numerical examples

Example 5.1. Let us consider a lightly damped system with { = 0.02, w, = 2, = {w,, w = /1 — w,,
[ — 7 w 0 1

A = Py J = [}
R

28 0
R‘_o 2}
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where f > 0. For robust stability, we compare our result to the approach of [22]. For R # 2/, we must use
a congruence transformation in order to apply the theorem in [22]. Hence, we transform

ATP+ PA+R=0 (45)
to obtain
ATP + PA+21,=0,

where A 2 S™'AS, and S is the congruence transformation matrix such that STRS = 2I,. As was mentioned
in Remark 4.3, this system is robustly stable for all ¢, eR. This follows from [22] by taking g = 1, that is,
R = 2I,, so that equation (45) has the solution P =(1/g)I,. Therefore, in the notation of [22],
P, £ £(JTP + PJ) = 0, and thus the singular values of P, are all zero. As a result, the robust stability region
1510, < oC.

Now consider the case f> 0. Following the same procedure mentioned above, we have
loy| <6, ~ (2/wP) (n* + w?)as B — . Thus, for large B the approach of [22] becomes highly conservative.
The reason for this conservatism is the similarity transformation of the skew-symmetric matrix J which was
effectively imposed by the choice R # 21,. In the new basis, the matrix J is transformed to S ~*JS, which is no
longer skew-symmetric.

Example 5.2. Consider the same system in Example 5.1 except with
R = ,
and for robust performance, let

V=

First, the robust stability region found by using the same technique as in the previous example is |o, | < 1.37,
an extremely conservative result. As in the previous example, the reason for this conservatism is due to the
similarity transformation of the skew-symmetric matrix J. In the new basis, the matrix J is transformed to
S™1JS, which is no longer skew-symmetric.

Next, let us compare the robust performance bound given by equation (39) in Proposition 4.2 with the
bound suggested by Bernstein and Haddad [3]. According to (39) the performance bound is
T (%) < (1/2n) tr (R) = 98.50, which is valid for all o, eR. In [3] the stability region and performance bound
can be found by solving

ATP,+ PLA+ A+R=0 (46)
and by determining the values of ¢, such that
01(A] P+ P44,) < 4, (47)

where A is a nonnegatiVe-deﬁnite matrix. First, letting A = kI,, where k > 0, it can be shown that the
solution to equation (46) is Py= P + (k/2n) I,, where P is the solution to (45) with

2 1
R = .
i
Therefore, we have the performance bound (%) < tr (PV) + (k/2n) tr (V) with robust stability region
|61] < k/Amax (JTP + PJ) (see Fig. 1). Alternatively, choosing 4 = 0.53R yields the robust stability re-

gion — 2.57 < 6, < 0.37 which yields the symmetric stability region |o,| < 0.37. For this robust stability
region the performance bound 7 (U) < 118.20 (see Fig. 2).
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120 -
nor ' Bernstein & Haddad [3]
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Fig. 1. Comparison of different robust performance bounds
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delta_l

Fig. 2. Comparison of different robust performance bounds

6. Discussion and conclusions

As was shown in Propositions 4.2 and 4.6, the maximum-entropy-type Lyapunov functions correctly
predict unconditional robust stability for arbitrary coordinates and thus, effectively, for an arbitrary state
space basis. In addition, the performance bounds predicted by the maximum-entropy Lyapunov function are
comparatively tight, even for large 6,, whereas the bound of [3] is extremely conservative and highly
coordinate-dependent. The problem of choosing an appropriate basis may be relatively benign if robust
stability analysis is performed independently of robust performance analysis. That is, for robust stability
analysis one can arbitrarily choose the state space basis to produce the best estimate of the robust stability
region without regard to robust performance. However, in the problem of robust controller synthesis the
basis is not arbitrary but rather is dictated by the weighting matrices ¥ and R. Thus, the fact that the
maximum-entropy-type Lyapunov functions provide robust stability and performance bounds that are only
slightly affected by the choice of V" and R appears to be a desirable feature for robust controller synthesis.
This may explain the favorable results obtained in [2,5,6, 18, 19].
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Homotopy Algorithm for Maximum Entropy Design

Emmanuel G. Collins Jr.,* Lawrence D. Davis,* and Stephen Richtert
Harris Corporation, Melbourne, Florida 32902

Maximum entropy design is a generalization of the LQG method that was developed to enable the synthesis
of robust control laws for flexible structures. The method was developed by Hyland and molivated by insights
gained from statistical energy analysis. Maximum entropy design has been used successfully in control design for
ground-based structural testbeds and certain benchmark problems. The maximum entropy design equations
consist of two Riccati equations coupled to two Lyapunov equations. When the uncertainty is zero, the equations
decouple and the Riccati equations become the standard LQG regulator and estimator equations. A previous
homotopy algorithm to solve the coupled equations relies on an iterative scheme that exhibits slow convergence
properties as the uncertainty level is increased. This paper develops a new homotopy aigorithm that does not
suffer from this defect and in fact can have quadratic convergence rates along the homotopy curve. Algorithms
of this type should also prove effective in the solution of other sets of coupled Riccati and Lyapunov equations

appearing in robust control theory.

Nomenclature

eld = m-dimensional column vector whose ith
element equals one and whose additional
elements are zeros

I = r X r identity matrix

®R", @™ = n x 1 real vectors, m x n real matrices

tr Z = trace of square matrix Z

vec(-) = invertible linear operator defined such
that vec(S) & [s]s7 -+ sT17, S € RPx9
where s; € ®” denotes the jth column
of §

Y>Z = Y — Z is positive definite

Y=Z = Y - Z is nonnegative definite

Y/Z = matrix whose (i, j) element is y;; /2;;,

Y and Z must have identical dimensions
(MATLAB notation)

YxZ = Hadamard product of Y and Z
([i2;)), Y and Z must have identical
dimensions

z* = complex conjugate of the matrix Z

VAL = complex conjugate transpose of the
matrix Z, (Z*)7

Z(k,:) = kth row of the matrix Z (MATLAB
notation)

Z(:, k) = kth column of the matrix Z (MATLAB
notation)

2ij, Zi,j, OF Z, jy = (i, ) element of matrix Z
= Kronecker product'4

1. Introduction

HE linear-quadratic-Gaussian (LQG) compensator! has

been developed to facilitate the design of control laws for
complex, multi-input/multi-output (MIMO) systems such as
flexible structures. However, it is well known that an LQG
compensator can yield a closed-loop system with arbitrarily
poor robustness properties.? This deficiency has led to general-
izations of LQG that allow the design of robust controllers.
One such generalization of LQG is the maximum entropy con-
trol design approach that was originated by Hyland® and Bern-
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stein and Hyland.** Maximum entropy control design was
developed specifically to enable robust control law design for
flexible structures. In particular, this design technique devel-
ops control laws that are insensitive to changes in the (un-
damped) modal frequencies. The approach was motivated by
insights from statistical energy analysis and has proven to be
an effective tool in the design of robust control laws for
ground-based flexible structure testbeds®’ and for certain
benchmark prcblems 810 .

The rigorous theoretical foundation for maximum entropy
design is not yet complete. However, in Ref. 11 it is shown
that, for an open-loop system, a Lyapunov function based on
the maximum entropy constraint equation predicts uncondi-
tional stability for changes in the undamped natural fre-
quency. The results of Ref. 11 also provide evidence that the
theoretical foundation of maximum entropy analysis and de-
sign may be related to recent robustness results based on pa-
rameter-dependent Lyapunov functions.!?

The computation of full-order maximum entropy con-
trollers requires the solution of a set of equations consisting of
two Riccati equations coupled to two Lyapunov equations. If
the uncertainty is assumed to be zero, these equations decouple
and the Riccati equations become the standard LQG Riccati
equations. A homotopy algorithm for solving these equations
is described in Ref. 13. This algorithm is based on first solving
an LQG problem and gradually increasing the uncertainty
level until the desired degree of robustness is achieved. Unfor-
tunately, the algorithm of Ref. 13 relies on an iterative scheme
that tends to have increasingly poor convergence properties as
the uncertainty level is increased.

The contribution of this paper is the development of a new
homotopy algorithm for full-order maximum entropy design.
Unlike the previous approach, this algorithm can have quad-
ratic convergence rates along the homotopy curve. Algorithms
of this type should also prove effective in the solution of other
sets of coupled Riccati and Lyapunov equations appearing in
robust control theory (e.g., Ref. 12). The algorithm has been
implemented in MATLAB and is illustrated using a control
problem from the Active Control Technique Evaluation for
Spacecraft (ACES) testbed at NASA Marshall Space Fiight
Center in Huntsville, Alabama. A useful feature of maximum
entropy design, seen in the example, is that it often produces
controllers that are effectively reduced-order controllers.
Other features of maximum entropy controllers are described
in Refs. 6 and 7.

The paper is organized as follows. Section II develops the
maximum entropy design equations. Section III gives a brief
svnopsis of homotopy methods. Next, Sec. IV develops z new
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homotopy algorithm for maximum entropy control design.
Section V illustrates the algorithm using a 17th-order model of
one of the transfer functions of the ACES structure at NASA
Marshall Space Flight Center. Finally, Sec. VI discusses the
conclusions.

II. Maximum Entropy Design Equations
Consider the system

X(1) = Ax(t) + Bu(t) + w (1)
y(1) = Cx(t) + Du(t) + wy(1)

where x € ®™, u € ®™, y € ®™, w, € R~ is white disturbance
noise with intensity ¥; =0, w, € ®"> is white observation noise
with intensity V»>0, and w, and w; have cross correlation
Viy € ®™=*n It is assumed that (A4, B) is stabilizable and
(A4, C) is detectable. Also, the matrix A is assumed to be of
the form

A = block diag[A®M, A®)]

where A® represents the dynamics that are certain and A"
represents the nominal dynamics of the uncertain modes and is
in real normal form; for example,

A“’:blockdiag{[_v‘ w'], — s, [—”3 “"‘B
—wy T —wy Y

We also assume that only the modes with complex eigenvalues,
corresponding to the 2 X2 blocks

)

—wp T

are uncertain and that the uncertainty patterns A; € ®”"=*"= are
of the form

0 1
A;=blockdiagi0,‘..,0, [ y O]’ O,A..,O}

Notice that the A4; correspond to errors in the undamped nat-
ural frequencies, i.e., the imaginary part of the eigenvalues.
The maximum entropy control design problem is stated as
follows. Find a full-order dynamic compensator (i.e., a com-
pensator of order n,),
X (1) = Aexc(1) + By (1)
u(t) = —Cex.(1)

which stabilizes A, defined later, and minimizes the cost func-
tional

J(Ar! chcc) =1r Q-R-

where Q satisfies
0=A,0+0AT +V + Y, A,QAT
and
A=A+

I & 4
- —AA’
2 '_g:] ;A

- [ A - BC,
B.C A.-B.DC,

- R, R2C. - v, Vi,BT
R = TRT T , V= T T
C/Ry C/RC BV, B.JV)B;

Aj = block diag{4;, 0, ]
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There is currently no rigorous justification for the requirement
that A, be stabilized, but extensive numerical examples have
shown that stability of A, insures stability of the nominal
closed-loop system. Notice that if no uncertainty is assumed
Gi.e., a,-‘éO), then the maximum entropy control design prob-
lem becomes the standard LQG problem. The solution to the
maximum entropy problem is characterized by the following
theorem.

Theorem 13-3. Suppose (A., B., C.) solves the maximum
entropy control design problem. Then, there exist nonnega-
tive-definite matrices Q, P, 0, and P such that 4., B., and C,
are given by

Ac = A —BRZ‘lPa - QaVZ—‘C + QaVZ-lDRZ-lPa

Bc=QaV2—l» Ccsz-IPn

where

1 2
A=A +§_E alAl

i=1

P,=BTP+R},, Q,=0CT+ W,

and the following conditions are satisfied:

0=ATP + PA; + R, - PIR;'P, + L a?AT(P +P)A; (1)
i=]

0=A,0+ 04T+ V- Q1107 + L a?ai(Q + 0)AT ()
i=)

0= (As_QaVZ-lC)TIS + IS(A:"'QaVZ_]C) + PaTRZ_lPa (3)

0= (A, -BR;'P;)Q + O(A;—BR;'P)T + Q. ¥, Q] (4)

Remark 1. 1f no uncertainty is assumed (i.e., «; a 0), then
Eqs. (1-4) decouple, Egs. (1) and (2) become the standard
LQG regulator and estimator Riccati equations, and (4., B,
C.) defined in Theorem 1 is an LQG compensator.

III. Homotopy Methods for the Solution of
Nonlinear Algebraic Equations
In the next section, we present a homotopy algorithm for
solving the maximum entropy design equations (1-4). A ho-
motopy is a continuous deformation of one function into an-
other. The purpose of this section is to provide a very brief
description of homotopy methods for finding the solutions of
nonlinear algebraic equations. The reader is referred to
Refs. 15-17 for additional details.
The basic probiem is as follows. Given set 6 and & con-
tained in ®” and a mapping F : ©—¢, find solutions to

F@) =0

Homotopy methods embed the problem F(6) =0 in a larger
problem. In particular, let /# : © x [0, 1]— ®”" be such that the
following conditions exist:

1) H(@, 1)=F(6).

2) There exists at least one known 6, € ®” that is a solution
to H(-,0)=0, i.e.,

H(6,,0)=0

3) There exists a continuous curve (6(\), \) in ®”x [0, 1]
such that

H@MN), =0 for Ne]0,1]
with
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4) The curve (8(N), A) is differentiable.

A homotopy algorithm then constructs a procedure to com-
pute the actual curve (6(\), \) such that the initial solution 6(0)
is transformed to a desired solution 8(1) satisfying

0= H{8(1), 1) = F(6(1))

Differentiating H(6()\), \) = 0 with respect to A yields Davi-
denko’s differential equation:

oH d8 doH
— =+ = 5
36 dN oA )
Together with 6(0) =6y, Eq. (5) defines an initial value prob-
lem that by numerical integration from 0 to | yields the de-
sired solution 8(1). Some numerical integration schemes are
described in Ref. 17.

IV. Homotopy Algorithm for Full-Order
Maximum Entropy Control Design

This section presents a novel homotopy algorithm that can
be used to design full-order maximum entropy controllers. The
algorithm is based on explicitly solving the four coupled max-
imum entropy design equations given in Eqs. (1-4).

A. Homotopy Map

To define the homotopy map we assume that the plant ma-
trices (A, B, C, D), the cost-weighting matrices (R, R3, Ri2),
the disturbance matrices (V;, V2, V1), and the vector of uncer-
tainty weights (o € ®") are functions of the homotopy param-
eter A € [0, 1]. In particular, the following is assumed:

0 20 2l e )
cny DN LG, D C; D) | Co Dy
[le Rix(N)

— T
REMN Rz()\)} = Le(MLa )

where
Lr(N)=Lgo+ NLrs—Lgyo)

and Lg ¢ and Lg ; satisfy

R R R R
LR.OLI(_O é |: ;-‘O 2.0 ’ LR‘fL,;rJé ;.'/ 12J
Rize Rao Ry Ryy
[ AIRAN

— T
VIO VJm] = LvNLy (M

where
LV()\) = Ly.o + )\(LVJ—LV'())
and Ly, and Ly, satisfy

Vo sz.o} W Vnz_/]

LysLT =[
d Vis Vo

LyoLl,= [

of(N) = o + Naf; —of ), i=1,2,...,n,

Notice that at A=0, A(\)=Ag, B(N=B,,...,a?(N=a},,
whereas at \=1, A(N)=A;, B(N)=By,...,a}(N)=o},;. Some
guidelines for choosing the initial and final matrices are dis-
cussed later in Sec. IV.C.

The homotopy 0= H((P, Q, P, 0),\) is given by the equa-
tions

0=A,(NTP(N) + PONA;(N) +Ri(N) = Pa(NTR,(N)~'Ps(N)

+ "Ea o (NATP(NA; + "E" o (NATP(NA; (6)
i= iz

0=A,NQMN + QNA; N+ V(N = QM V2™ (NQ(N)T

+ E. af(NA,QNAT + Z:l a4 QAT M
0= [4:(N = QN ' NCN]TP(N

+ POV[A: N - Q.M (NCN)

+ Po(NTR; (NP (V) (8)
0=[A,(N-BMORS'NP.N]ON

+ GV [A:N - BOVR (NPT

+ QMY (NQ(NT )

where
"a

ANEAMN) + % L a?(NA?

P.ONEB(NTP(N) + RN, Q(N2 QNCNT + Via(N)

B. Derivative and Correction Equations

The homotopy algorithm presented in the next section uses
a predictor/corrector numerical integration scheme. The pre-
dictor steps require derivatives [P()), Q(N\), P(N) O(N)],where
MEdM/d\, whereas the correction step is based on using
Newton corrections, denoted here as (AP, AQ, AP, AQ). Next
we derive the matrix equations that can be used to solve for the
derivatives and corrections. For notational simplicity we omit
the argument A in the derived equations.

1. Derivative Equations

Differentiating Eqs. (6-9) with respect to A gives the follow-
ing coupled matrix equations:

Y 2474, (10)

i=1

0=ALP+PAp + R + L o?ATPA; +
i=1

1

0=A00+ QAL + V + 1 a?A,04T + ¥ o24,047 (11)
i=1 i=1

i=

O-_—Agﬁ‘l’ ISAQ +R + GcQﬁ +FQGC
+ HIPKy + KFPH, (12)
0= Apé + QAAz +V+ GBPE +EPGB
+ HoQKJ + KoQH] (13)
where

ApL A - BRy WP,y  ApL A, - QVyinC

RA ATP + PA, + Ry — PTRy n(BTP + RT,)
- (PB+R12)R2.invPa - PaTRZ.invPa
+ ,-ij, & AT (P + P)A,;

V& A4,0 + QAT + Vi - QuVain(CQ + V)
-(QCT+ V) Va,iv@a = QaV2inv o

+ E &isqANQ + O)AT
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R4 [As - QV2imC = QoVaimC — (QCT + Vlz)Vz.invC] TP
+PA; = QV2.inC = QuV2,ineC = (QCT + V1) VaimC)
+ PIRy,n(BTP + R]) + (BTP + R)"Rain P
+ PRy in Py
V & [A, - BRy,invPo = BR2 inv P ~BR2,n(BTP + R]))| 0
+ O[As = BRyinPo — BRyinuPo = BR2,in/(B™P + R1,)] "
+ @ Vo, (QCT+ Vig)T + (QCT + Vi) Va,im Q7
+ Q:Vaim@J
Gp = —BRy;nsB”, G, = —CTV3,n.C, E= Q, F=p
Hp = BRyinPo, Hp=QVoinC, Kp=1,, Ko=1I,
Note that in the previous equations we have used the notations

RZ,in\' é RZ_ : ’ VZ,inv -é Vz— : ’ X sq "-A: u’?
2. Correction Equations

The correction equations are developed with ) at some fixed
value, say M. The derivation of the correction equations is
based on the relationship between Newton’s method and a
particular homotopy. In the following text we use the notation

af
gy & =
S@= 2
Let f: ®"—@®" be C! and consider the equation
0=/(6) (14)

If 69 is the current approximation to the solution of Eq. (14),
then the Newton correction'® Af is given by

gUi+N — gD B AG = ~f' (6)" e (15)
where
e éf(g(i))

Now, let 8¢) be an approximation to 6 satisfying Eq. (14).
Then, with e as given immediately above, construct the follow-
ing homotopy to solve Eq. (14):

(1-Be =f(68),  B€0,1] (16)

[Note that at =0 Egq. (16) has solution 6(0)=6), whereas
6(1) satisfies Eq. (14)]. Then, differentiating Eq. (16) with re-
spect to S gives

36
38 {g=o0

Remark 2. Note that the Newton correction Af in Eq. (15)
and the derivative 36/38|s-¢ in Eq. (17) are identical. Hence,
the Newton correction Af can be found by constructing a
homotopy of the form of Eq. (16) and solving for the resulting
derivative 36/3B|g-0. As seen later, this insight is particularly
useful when deriving Newton corrections for equations that
have a matrix structure. It is also of interest to note that the
homotopy of Eq. (16) is appropriately referred to in some
literature as a ‘‘Newton homotopy.”’ !*

Now, we use the insights of Remark 2 to derive the equa-
tions that need to be solved for the Newton corrections
(AP, AQ, AP, AQ). We begin by recalling that A is assumed to
have some fixed value, say X*. Also, it is assumed that P*, Q*,

=-f' 0" e a7

MAXIMUM ENTROPY DESIGN

P* and O* are the current approximations to P()\*), Q(\*),
P(3), and O(M) and that Ep, Eo, Ep, and Eg are, respec-
tively, the errors in Egs. (1-4) with A=)* and P(N), Q(N),
P(\), and O()) replaced by P*, Q*, P*, and O*

We next form the homotopy

(1-B)Ep = ATP(B) + P(B)A, + R, = P,(B)"R; 'Po(6)

+ 5 ataTP@)4; + & 2 ATPB)A, (18)
i=]

i=1
(1-B)Eg = A;0(8) + QBAT + V, — Q.(B)Vy ' Qu (B)”
+ 5 2AQ@AT + ¥ A4, 06)AT (19)
i=1 i=1
(1-B)Es = [4,0.(8V;'C)P(B)
+ P(B)[As = Qu(B)V5™'C] + Po(B)R5 ' Pa() (20)
(1-B)Eg = [A: -~ BR; 'P,(B)} 0 (8)
+ OB [A: — BR; ' Po(8)) + Qo (BIV ' Q(B)T @1)
where
A=A+ 55 atA?
i=1
P, = BTP(B) + R, Q. =QB)CT+ W
and the system matrices are assumed to be evaluated at A=\,
ie, (4,B,....,R,,Ry,..)=[AN),BON),..., Ri(M), R2(W),

...]. Differentiating Egs. (18-21) with respect to # and using
Remark 4 to make the replacements

dP dQ

AP=—| A0 = ==
df |g=0 0 dB |g=0

. dP dQ

AP=—| A0 ==
dB |s=0 0 dB lg=0

gives
0=ALAP + APAp + R + ¥, o?ATAPA,;
1=1

+ 1 a?ATAPA; (22)

i=]

0=AgAQ + AQAL + V + El alA;AQAT
+ Y a24,0047 (23)
i=1

0=ALAP + APAg + R + GcAQF + FAQG:
+ HIAPKp + KFAPHp (24)
0 =APAQ + AQA; +V+ GBAPE + EAPGB
+ HoAQK] + KoAQH] (25)
where
A -1 A -1
ApzAs—BRz Pg, AQ=AS_Q0V2 c

R=Ep, V=E;, R=Ep, V=Eg

Gp= -BR;'BT, G.=-C'Vy'C, E=Q, F=P

HP=BR2’]P0, HQ=Q0V2—1C, KP:I":‘ KQ=1n

x
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Comparing Egs. (22-25) with Egs. (10-13) reveals that the
derivative and correction equations are identical in form. Each
set of equations consists of four coupled Lyapunov equations.
Since these equations are linear, by using Kronecker products'*
they can be converted to the vector form Gx=b where for
Egs. (22-25) x is a vector containing the independent elements
of AP, AQ, AP, and AQ. The @ is then a square matrix of
dimension 2n, (n, + 1). Inversion of @ is hence very computa-
tionally intensive for even relatively small problems (e.g.,
n, = 10). .

Fortunately, the coupling terms described by the summation
terms in Eqgs. (22) and (23) are relatively sparse. In particular,
each summation has only 3n, independent terms. Hence, a
technique similar to that described in Ref. 19, which exploits
this sparseness, can be used to efficiently solve Eqs. (22-25) [or
equivalently Egs. (10-13)]. The details of the solution proce-
dure are described in Appendix B. The solution procedure re-
lies on the solution of a maximum entropy Lyapunov equation
as described in Appendix A. The results of Appendix A are
also based on the results of Ref. 19. Both Appendices A and B
rely on diagonalization of the coefficient matrices of each of
the Lyapunov equations. Since efficient MATLAB implemen-
tation requires the minimization of the use of for loops, the
solution procedures of Appendices A and B implement the
techniques of Ref. 19 with minimal looping. A complete
derivation of these results is presented in Ref. 20.

C. Overview of the Homotopy Algorithm

This section describes the general logic and features of
the homotopy algorithm for full-order maximum entropy
control. It is assumed that the designer has supplied a set
of system matrices Sy = (A, By, Cy, Dy, R, Rayy Rizygs Vigs
Vas,Vizys» @) describing the optimization problem whose
solution is desired. In addition, it is assumed that the de-
signer has chosen an initial set of related system matrices
So=(Ag, By, Co, Do, R0, R2,0, Ri20s Vi0s V205 V10, o) that
has an easily obtained or known solution (Pg, Qo Po, Og) to
the maximum entropy design equations. Note that we can
always choose ao=0 in which case (Py, Qo, Py, Qo) cor-
responds to an LQG problem and can be computed using
standard Riccati equation and Lyapunov equation solvers.
In practice, we often choose the remaining system matrices
to have equal initial and final values, i.e., A;=Ay, B, =B,
ceey R|J=R1'0, RZ‘j’=R2,Or"- ’ V1J= V]_o, Vz_f= Vz'o. How-
ever, there is a strong rationale for allowing these matrices to
vary during the homotopy. For example, suppose a maximum
entropy controller of a particular robustness (corresponding to
some value of «) is designed but the controller authority level
is not desirable. Then, instead of changing the weights
R, Ry, Rz, |, V5, and V), to reflect the desired authority
level, solving the corresponding LQG problem (that is, the
problem with o =0), and then using the homotopy algorithm
to reinsert the robustness (corresponding to the original value
of «), we can use the homotopy algorithm to modify the
weights R, R,,..., with « fixed to its original value. Simi-
larly, we can modify the nominal plant matrices A, B, C, and
D with « fixed to reflect new data concerning the plant.

Later we present an outline of the homotopy algorithm. This
algorithm describes a predictor/corrector numerical integra-
tion scheme. The prediction step uses cubic spline prediction as
described next.

1. Cubic Spline Prediction

Here we use the notation that Ao, A_;, and A represent the
values of A at, respectively, the current point on the homotopy
curve, the previous point, and the next point. Also, M 2dm/
dA. The prediction of P(\,) requires P(N\q), P(No), P(A_1),
and P(\_;). In particular,

vec [P()\g)] =ag+ @\ + @ N + asN,

where a,, a,, @, and a, are computed by solving

vec [P()\_ ,)]w
vec [P()\_ l)}
vec [P()\o)]
vec [P()\o)]

ap a; a; a
l[ao a az as) N, 2 N 2h

N, O, N 3N

Note that if P(A_,;) and P(\_,) are not available (as occurs at
the initial iteration of the homotopy algorithm), the P(},) is
predicted using linear prediction, i.e.,

P(\)=P(No) + (M- Ao)P(Xo)

2. Outline of the Homotopy Algorithm

Step I: Initialize loop=0, A=0, AN € [0, 1], S=S8,, (P,
0, P, Q)=(P0v Qo, Po, Qo)-

Step 2: Let loop=1loop+ 1. If loop =1, then go to step 4.

Step 3: Advance the homotopy parameter A and predict
the corresponding P(N), Q(N), P(\), and QO()) as follows:

3a: Let Ag=A.

3b: Let A=XAg+ AN . .

3c: Compute P(Ng), Q(No), P(No), and Q(Xo) using
Eqgs. (10-13).

3d: If loop =2, predict P(N), Q(N), P(N), and @ (\) using
linear prediction, or else predict P(\), Q(N), P(N), and O ()
using cubic spline prediction.

3e: Compute the errors (Ep, Eg, Ep, Eg) in the maximum
entropy equations (1-4). If the max (|| Eq|l, ||Epll, IIEsil,
|Egll) satisfies some preassigned tolerance, then continue.
Otherwise reduce A\ and go to step 3b.

Step 4: Correct the current approximations P(X), Q(N),
P(N), and @ () as follows.

d4a: Compute the errors (Ep, Eg, Es, Eg) in the maximum
entropy equations (1-4).

4b: Solve Egs. (22-25) for AP, AQ, AP, and AQ.

4c:  Let :

PN—PN+4aP,  QMN—QN)+4Q

OMN—0MN +aQ

4d: Recompute the errors (Ep, Eg, Ep, Ep) in the maxi-
mum entropy equations (1-4). If the max (|| Epif, | Eoll, || Epil
lEgll) satisfies some preassigned tolerance, then continue.
Otherwise go to step 4b.

Step 5: If A=1, then stop. Otherwise go to step 2.

Remark 3. Since the corrections of step 4 correspond to
Newton corrections, quadratic convergence can be insured by
choosing the prediction tolerance, used in step 3e, sufficiently
small. This insures that along the homotopy curve the approx-
imation to (P(N), Q(N), P(N), O(N) is close to the optimal
value (P*(A\), Q*(N\), P*(\), O*(N\). Hence, the quadratic
convergence properties of Newton’s method'® can be realized.
This quadratic convergence has been observed in numerous
examples. _

Remark 4. The previous homotopy algorithm for maxi-
mum entropy design advanced the P and Q equations sep-
arately from the P and @ equations. That is, P(\) and Q(N)
were corrected with P(\)=P,(\) and Q(N)=C,(\) where
P,(N\) and Q,(\) are approximations. Similarly, P(\) and
O(N) were corrected with P(A)=P,(N) and Q(N)=Q.(N)
where P,(\) and Q,(\) are approximations. This iterative
scheme tends to converge slowly as the uncertainty level is
increased and never exhibits quadratic convergence, no matter
how small the prediction tolerance.

Notice that the algorithm relies on solving four f:ouplcd ‘
Lyapunov equations (10-13) or (22-25) at each prediction step
or correction iteration. Efficient solution of these equations
makes the algorithm feasible for large-scale systems. The cur-
rent solution procedure is based on diagonalizing the cqefﬁ-
cient matrices A, and A, of the coupled Lyapunov equations.
This is usually possible. However, it is possible that this diag-

BN—P(\) + AP,
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Table1 Run-time statistics of the maximum
entropy homotopy salgorithm

Predictions and

Initial 3 Final 8  Megaflops  Real time, s corrections
0 0.01 1246 609 43
0.01 0.1 1062 519 36
0.1 1 1062 513 36
1 5 1212 617 4]

Table 2 Robustness to simultaneous shifts
in the undamped natural frequencies

B8 Awmin, rad/s Awmax, rad/s
0 (=LQG) —0.000075 0.0075
0.01 -0.0037 0.036
0.1 -0.080 0.69
1 -1.6 7.1
5 -15 - 94

onalization will be intractable for some points along the homo-
topy path. In this case, one could randomly perturb the system
matrices so that diagonalization is possible. The perturbation
is then removed at the end of the homotopy curve. This type
of random perturbation is commonly used in ‘‘probability one
homotopies.”’!” An alternative is to embed a numerical condi-
tioning test in the program to determine whether the coeffi-
cient matrices are truly diagonalizable. If they are not, then
one can solve the coupled Lyapunov equations using a non-
diagonal alternative such as the Schur decomposition.

V. Ilustration of Maximum Entropy Design
Using the ACES Structure

This section illustrates the design of a maximum entropy
controller for a 17th-order model of one of the single-input/
single-output (SISO) transfer functions of the ACES structure
at NASA Marshall Space Flight Center.?! The actuator and
sensor are, respectively, a torque actuator and a collocated rate
gyro. The model includes the actuator and sensor dynamics. A
first-order all-pass filter was appended to the model to approx-
imate the computational delay associated with digital imple-
mentation.

The Bode plots of the open-loop plant are illustrated in
Fig. 1. The basic control objective is to provide damping to the
lower frequency modes of the structure (i.e., the modes less
than 3 Hz) as measured by the rate gyro. The undamped natu-
ral frequencies of each of the eight flexible modes are consid-
ered uncertain. (Note that there are two modes at 2.4 Hz, one
of which is virtually unobservable.) Maximum entropy design
is used to add uncertainty to each of these modal frequencies
to increase the design robustness. The uncertainty vector
a € R8s given by

o = fBxag

where each element of .o € ®® has unity value, reflecting
equal uncertainty in each of the flexible modes and S is a scale
factor chosen to represent the level of uncertainty. The precise
relationship between 8 and the allowable frequency perturba-
tions is not currently defined by maximum entropy theory.

For this example, the MATLAB implementation of the max-
imum entropy homotopy algorithm was run on a 486, 66-MHz
personal computer. The only system matrix that was allowed
to vary was a; hence, Ay =Ag, By=Bo,..., Vzy = Vi2,0. Table
1 shows some of the run-time statistics of the program. The
highest uncertainty design, corresponding to =5, was ob-
tained in approximately 37 min. Notice that the number of
flops and the run time are essentially linear with respect to the
log of the scale factor 8. This general trend has also been
observed in other design examples.

20 PLANT BODE PLOT
~ 40
=®
b
3 £0
£ 80
? o
1 10 10 10?
frequency (Hz)

phase (deg)

frequency (Hz)

Fig.1 Bode plot of SISO ACES transfer function.

MAGNITUDE OF CONTROLLERS

magnitude (dB)

frequency (Hz)

Fig.2 Magnitude frequency response of LQG and maximum en-
tropy controllers.

As 8 was increased, the maximum entropy controllers be-
came increasingly more tolerant to changes in the (undamped)
natural frequencies. Table 2 describes the robustness proper-
ties of the closed-loop systems when the natural frequencies of
the open-loop plant were simultaneously shifted by Aw. The
parameter Awp;, corresponds to the maximum negative fre-
quency shift, whereas Awmax corresponds to the maximum pos-
itive frequency shift. Notice that the LQG controlier is very
sensitive to perturbations in the natural frequencies. The max-
imum entropy controller corresponding to 8 =5 allowed maxi-
mum perturbations that were more than four orders of magni-
tude greater than those allowed by the LQG controller.
Robustness analysis that allows independent variations in the
modal frequencies can be performed fairly nonconservatively
by using theory based on Popov analysis and parameter-de-
pendent Lyapunov functions.’? An illustration of the applica-
tion of this theory is given in Ref. 22.

Figures 2 and 3 compare, respectively, the magnitude and
phase of the initial LQG controller and the maximum entropy
controllers corresponding to $=1 and 5. Notice that the §=5
controller has a very smooth frequency response and is positive
real over a very large frequency band, giving it very significant
robustness. The magnitudes of the closed-loop transfer func-
tions corresponding to the LQG compensator and 8 =5 maxi-
mum entropy compensator are shown in Fig. 4. As would be
expected, the nominal performance (measured by the amount
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PHASE OF CONTROLLERS

phase (deg)

ot 100 10! 10
frequency (Hz)

Fig. 3 Phase frequency responses of LQG and maximum entropy
controllers.

CLOSED-LOOP TRANSFER FUNCTION MAGNITUDES

magnitude (dB)

120 N NN . N R . .
10! 100 10! 102

frequency (Hz)

Fig. 4 Magnitude of the closed-loop transfer functions correspond-
ing to the LQG and §=5 maximum entropy controller.

of damping in the modes below 2 Hz) of the maximum entropy
controller was significantly less than that provided by the LQG
controller. However, significant damping was provided by this
controller, and as previously discussed, this controller is much
more robust than the LQG compensator.

The smoothness of the maximum entropy controller corre-
sponding to 8 =5 indicates that its effective order is much less
than 17. Using balanced controller reduction,? a fourth-order
compensator was obtained whose frequency response is nearly
identical to that of the 17th-order compensator. The ability to
produce what are essentially reduced-order controllers is an
important practical feature of maximum entropy design. An-
other interesting feature of maximum entropy design is that it
will sometimes widen and deepen controller notches to ro-
bustly gain stabilize certain modes. This property is illustrated
in Refs. 6 and 7. In Ref. 8, maximum entropy design is applied
to a multi-input/multi-output control problem, whereas in
Ref. 10 maximum entropy design is applied to a neutrally sta-
ble system.

V1. Conclusions

This paper has presented a new homotopy algorithm for
maximum entropy control design. The example of the previous
section illustrated the use of the algorithm using a medium
scale model (17 states) representing a transfer function of the

ACES structure at NASA Marshall Space Flight Center. Very
robust designs were obtained in a reasonable amount of time
on a 66-MHz, 486 personal computer. For this example, an
interesting feature of the most robust maximum entropy con-
troller was that it was essentially a reduced-order controller.
This allowed a 17th-order compensator to be easily reduced to
a fourth-order compensator by using balanced controller re-
duction. The frequency responses of the two controllers were
essentially identical, indicating that the reduced-order con-
troller maintained the robustness and performance properties
of the full-order controller. Algorithms of the type described
here should also prove effective in the solution of other sets of
coupled Riccati and Lyapunov equations appearing in robust
control theory.

Appendix A: Efficient Computation of the Solution
to the Maximum Entropy Lyapunov Equation

The Appendix presents a solution procedure for efficiently
solving for Q satisfying the n X n maximum entropy Lyapunov
equation

0=A,Q0+ QAT+ V + ¥ a?A4,0A47 (Al)
i=}

where
Ai=e(l(D))e(t(N+1)T—e(tu()+ e (G())T (A2

where £, € ®R"=is a vector with distinct elements, each of which
lies in the interval (1 n], and e : [1, 2,..., n]—@®" is defined
by

0, ik

e"(k)={1 i=k

It is assumed that Eq. (A1) has a unique solution. The solution
procedure also assumes that A is nondefective and is based on
transforming A to a complex, diagonal matrix. Details of the
derivation of the solution procedure are given in Ref. 20.
Let ¥ be the eigenvector matrix of A4, such that
A = VAV-!

where A € €% is diagonal. Then premultiplying and post-
multiplying Eq. (A1), respectively, by ¥~! and ¥~ ¥ yield

0=AQ+ QA* + V+ M(Q)
where
QLvy-IQv-H

o (A3)
M©@) = L M(Q)

VAaAvy-lyy-H
and
M(Q) 2 o}V A, ¥ Q¥HATY -4

The solution procedure relies on the following definitions:
» (w, € RY);

NA[AL Ay o AT

S & —diag~!'(\w? +w,N) (A4)

2 3
Moo & [Mg. MG MG] (AS)
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where
MY, = (0. ®¥'C, L) * (¥ °C, £)®wn)
M@, = (0 @Y1 latwn))# (¥7°C lo+ wn )@ an)
MY, = (0n®@¥ (. L))+ (¥°C t’u+én,)®wn)
+ (@ ®Y Gt ) 2 (Y76 L)@ n)

where
N“)a
No.a? | NG (A6)
N(3)u
where
Ng’)a = ((ata)w[;)
.[(\p.(p‘,w%, H®w]) + (o] @Y L+, :))]
N(Qz')a = ((a*a)w[;)
[ H@6T) + (TR, )]
N, = = ((axa)w],)
[t on,, @) + T ®Y(, )]
Pp.o 8 (I =Ng.oS Mg.a) "N o (A7)
To2S MgoaPg.o+1n (AB)

Summary of Solution Procedure
Step I: Compute S, Mg, and Ng, satisfying, respec-
tively, Eqs. (A4-A6).

Step 2: Compute Py , satisfying Eq. (A7).
Step 3: Compute Tp satisfying Eq. (A8).
Step 4: Compute Q satisfying
vec (Q) = TS vec(V)
Step 5: Compute Q satisfying Eq. (A3) or equivalently
Q = vovH
Remark A.1. An intermediate step in the derivation of the

solution procedure is that

vec (M(Q)) = Mg .2(Q)

where
ZH(Q)
2D 2| z22(0)
212(0)
and

211.4(0) & o} ¥ (k +1), )OYH(, k +1)
222.1(Q) & o} ¥(k, HOYH(:, k)

212.1(0) & —a2¥(k +1, )Q¥H(k, )

Appendix B: ‘Efficient Computation of the Solution
to Four Coupled Lyapunov Equations for
Differentiation and Correction

This Appendix develops a solution procedure for efficiently
solving for P, Q, P, and Q satisfying the four n X n coupled
Lyapunov equations

0=A} +PAp+R + L oalATPA; + L ofATPA;  (B])
iw i=1

0=AgQ + QAL+ V+ ¥ 4,047+ ¥ alA, QAT (B2)

) i=1 il
0=ALP + PAg + R + GcQF + FQGc + HEP + PHp (B3)
0 =APQ + QATQ. +V+ Ggpé + EPGB + HQQ + QHg (B4)
where A; is defined b’y Eq. (A2). It is assumed that Egs.
(B1-B4) have a unique solution (P, Q, P, 0). It is also as-
sumed that Ap and A are nondefective. The solution proce-
dure is based on transforming Ap and A to complex diagonal
matrices. The resuits of Appendix A are used extensively. The
actual solution procedure is summarized at the end of this

Appendix.

Let ¥, and ¥, be the eigenvector matrix of Ap and Ay,

such that
Ap=V¥pAp¥,', Ag =YoAp¥5' (BS)

where Ap € C"*" and Ap € C"*" are diagonal. Substituting
Egs. (BS) into Eqs. (B1-B4) yields

0= AZP + PAp + R + Mp(P) + Mp(P) (B6)
0=ApQ + QAH + ¥+ Mo(Q) + Mo(0) (B7)

0=A’('?’13 + }_5AQ +R+G-OF + FQGc
+ HEPKp + KHPH, (B8)

0=Ap0 + QA + V + GPE + EPGy + HoOKY

+ KoQHY (BY)
where
P=viPV,, Q=¥5'0¥5" (B10)
P =¥4PY,, O=v;'0¥;" (B11)
R=V¥ERYp, V=v5'vysH
R = YBRY,, Vo=v;'W¥;H

Mp(B)=Y 3 YHATY HPY A ¥,

i=]
MP(P)' = .ij, AVHATYGH PV A,
My(Q) = '\5,1 o}V Ao QVGATY !
My(0) = i"g V5 A OVEATY P

GC=\I’gGC\I’Q, GB-_—’WEXGB‘I’;H

F=wlifv, E=¥;'Ev;H

HP=‘I’;‘HP‘1/Q, HQ=‘1’;]HQ‘I’Q

RKp=¥5'¥,, Ko=¥;'¥,
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For A € ® and ¥ € ®"*” the functions seig, malpha, and
nalpha are defined as follows:

S = seig(A)
is equivalent to
S = [~ diag(hw] +w,¥)] !
M, = malpha(¥)
is equivalent to
M, = [Mf,” Mf) Mf’]
where
M = (0, @ UG, 8)) * (¥, L) @)
MP = (0, ®¥C, ly+w,) * (¥C, bt )@wn)
MP = (@, ®¥(, ) (¥(:, byt wn ) Dw,)
+ (0n ®@VC, b+ wn ) » (¥, L) ®w,)
N, = nalpha(¥)

is equivalent to

where
N = ((exauls) s [ (¥t + 0,y D@T)
+ (W] @V (L + Wi, :))]
N = ((@ra)ols) [ (¥"(tr DO + (o] @ ¥ (L, )]
ND =~ ((ana)Ts)» [ (¥t + 0 DD T) (0] @ (8, )]

It follows from the results of Appendix A that Egs. (B6)
and (B7) can be expressed as

vec(P) = TpSpvec(Mp(P)) + TpSpvec(R) (B12)

vec(Q) = TS vee (Mo(Q)) + ToSovec(¥) (B13)

where

Tp =(SpMp oPpo+1s),  To = (SoMg.oQ0.o+1,)
Ppo=(I,=Np SpMp ) 'Np ,
Q0.a = (In = Ng,aSoMp,.)~'Ng o
Sp = seig(Np), Sg = seig(Ag)
Mo =[Apyy Ap2a - Ap,nn]T
Mo =[Agn Agaz -+ Agmnl”

Mp .= malpha(¥}), MQ,u = malpha(*{rél)

Np o = nalpha(¥;°), Ny, = nalpha(¥,)
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Using standard Kronecker algebra, we can express Eqs. (B8)
and (B9) as

vec(i’:) = 8§§Up, vec(P) + S3Up,, vec(Q) + S vec(l-?:)

(B14)
vec(é) = SpUp; vec(P) + SpUp 2 vec(Q) + Sp vec( 7)
(B15)
where
Uy = (KI®HE) + (FE@KE)
_ _ (B16)
Ugs= (FT®Gc) + (GIQF)
Up:=(ET®C5) + (G}®E)
(B17)

Ug.: = (KE®Hy) + (H®Kp)
Now, from the resuits of Appendix A, we can write
vec(Mp(B)) = Mpoz(P), vec (Mo(0)) = Mg .2(0)
(B18)
2(P) = Npovec(B),  2(Q)=Ngovec(Q)  (BI9)
where

Np.o = nalpha(¥5°), Ny, = nalpha(¥,)

Substituting, Eqs. (B12) and (B13) into Egs. (B14) and (B15)
gives

vec(P) = S3Up,, TpSpvec (Mp(P))
+ S§Uq.ToSovee (Mo(Q) + bo (B20)
vec(Q) = S3Up 1 ToSpvec (Mp(P))
+ S2UG2ToSo(Mo(0)) + 2o @21
where

SGUp, 1 TpSpvec(R) + S§Uq. 1 ToSp vec(V) + S§ vec(E)
(B22)

Po
éo = S;Uplz TPSPVCC(R) + S;UQJTQSQ VCC(V) + S;VCC( —‘})
(B23)

Substituting Egs. (B18) into Eqs. (B20) and (B2!) gives

. vec(l_’:) = Sé Up'] TpSpMp‘nZ(I_s)
+ 58Ug.1 ToSoMq..2(Q) + o (B24)
vec(0) = SAUp, TpSpMp .2 (P)

+ 53Up,2 ToSoMp a2(9) + 2o (B25)
Substituting Eqs. (B24) and (B25) into Eq. (B19) zives

2(P) = Np oS8 Up, TpSpMp o2 (P)
+ Np.a53Uq.1 ToSeMo,o2(Q) + Np.abo
2(0) = Np.oS2Up 1 TpSeMp o2(B)

+ Ng.oSEUg TQSQMQ.az(é) + Ng.«o
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or, equivalently,
[Dn DIZ] Z(é)] - []?P.al?o] (B26)
Dy Dxl{z(Q) No.«do

Dy, = Isn, = Np.oSGUp1 TpSpMp.o

where

N (B27)
Dy = —NP.asé Ug.i TQSQMQ-a
Dy = —No.oSPUp 2 TeSpMp o

) (B28)
Dy = Isn, = Ng.«SFUQ,2ToSoMg.«

Finally, substituting Egs. (B18) into Egs. (B12) and (B13)
gives

vec(P) = TpSpMp oz (P) + TpSpvec(R) (B29)

vec(Q) = TpSpMg..2(0) + ToSovec(V) (B30)

Notice from Egs. (B16) and (B17) that Up,, Ug.1» Up, and
Uy are each an n?x n? matrix. The storage required to com-
pute these matrices is hence very large for large n. To avoid
this memory reguirement it is possible to compute Po and go
satisfying Egs. (B22) and (B23) and Dy, D,,, Dy, and Dy,
satisfying Eqgs. (B27) using the identity

vec(ADB) = (BT@A)vec(D)
By substituting Egs. (B16) and (B17) into Egs. (B19), (B27),
and (B28), and using Eq. (B29), it follows that pg, Go, D
Dy, D,;, and D, can be computed using the following algo-

rithms. In these algorithms vec; ! : ®"—®"*" is understood to
be the operator satisfying

M = vec; (vec(M))

Algorithm for computation of po and Go:

Wp = vec;! ((Mp,aPp,‘,+I,,)Spvec(R))
W, = vec; ' ((MQ,,PQ“,H")SQvec(V))
o= vec((GWoF + HEWpKp) + (G WoF + HEWpKp) + R)
go = vec((GaWpE + HoWoK{) + (GaWpE +HoWoKE )Y + V)
Algorithm for computation of Dy, Dia, Ds,, and Dj:

Vp = TPSPMF,ay VQ = TQSQMQ‘C,

fori=1:3n,

DG, i) = Iy, — NpoSgvec(HEVp(, DKp+ KE VR (s i)"Hp)
DyoGc, i) = — Np oSEvec(G VoG, NF +FHVoG, NGl
DG, i) = = Ng.oSvec(HoVe(, NRE +KoVe(:, NHE)

DG, i) = Iyn, — No.oSE(HoVol:, DKE +KoVole, )WHG)

Summary of Solution Procedure

Step 1:  Construct Dy, Dy, D,,, and D,, and solve Eq.
~ (B26) for z(P) and z2(Q).

Step 2: Solve Egs. (B29) and (B30) for Pand Q.

Step 3: Solve Egs. (B24) and (B25) for Pand Q.

Step 4: Compute P, Q, P, and 0, satisfying Eqgs. (B10)
and (B11), or equivalently

MAXIMUM ENTROPY DESIGN

P=Y;HPV;},

Q = ¥o0¥¢
O=v;"Py;,  0=¥0¥
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1. Introduction

One of the most basic issues in system theory is the stability of feedback interconnections. Four
of the most fundamental results concerning stability of feedback systems are the small gain, posi-
tivity, circle, and Popov theorems. In a recent paper [6], each result was specialized to the problem
of robust stability involving linear uncertainty, and a Lyapunov function framework was established
providing connections between these classical results and robust stability via state space methods.
Furthermore, it was pointed out in [6] that both gain and phase properties can be simultaneously
accounted for by means of the circle criterion which yields the small gain theorem and positivity
theorem as special cases. It is important to note that since positivity theory and bounded real
theory can be obtained from the circle criterion and vice versa, all three results can be viewed as
equivalent from a mathematical point of view. However, the enginecring ramifications of the ability
to include phase informa,ition can be significant [3]). As shown in [6], the main difference between
the small gain, positivity, and circle theorems versus the Popov theorem is that the former results
guarantee robustness with respect to arbitrarily, time-varying uncertainty while the latter does not.
This is not surprising since the Lyapunov function foundation of the small gain, positivity, and cir-
cle theorems is based upon conventional or fixed Lyapunov functions which, of course, guarantee
stability with respect to arbitrarily, time-varying perturbations. Since time-varying parameter vari-
ations can destabilize a system even when the parameter variations are confined to a region in which
constant variations are nondestabilizing, a feedback controller designed for time-varying parameter
variations may unnecessarily sacrifice performance when the uncertain real parameters are actually

constant.

Whereas the small gain, positivity, and circle results are based upon fixed quadratic Lyapunov
functions, the Popov result is based upon a quadratic Lyapunov function that is a function of
the parametric uncertainty. Thus, in effect, the Popov result guarantees stability by means of a
family of Lyapunov functions. For robust stability, this situation corresponds to the construction
of a parameter-dependent quadratic Lyapunov function [7,8]. A key aspect of this approach (see
[7,8]) is the fact that it does not apply to arbitrarily time-varying uncertainties, which renders it
less conservative than fixed quadratic Lyapunov functions (such as the small gain, positivity, and
circle results) in the presence of real, constant parameter uncertainty. A framework for parameter-
dependent Lyapunov functions was recently developed in [7,8]. An immediate application of this
framework is the reinterpretation and generalization of the classical Popov criterion as a parameter-

dependent Lyapunov function for constant linear parametric uncertainty.



The main contribution of this paper is the unification of the circle and Popov criteria via a
parameter-dependent Lyapunov function framework that yields both results as special cases. The
unification of the circle and Popov criteria per se is not new to this paper. Indeed, a parabola test
which accomplishes this goal was originally developed in [2] and further studied in [10]. However,
these results are confined to SISO systems and rely on graphical techniques. The present paper

thus has four specific goals:

1. to provide a general framework for the parabola test in terms of parameter-dependent

Lyapunov functions in the spirit of [7,8];
2. to obtain a state space characterization of the parabola test via Riccati equations;
3. to obtain a multivariable extension of the parabola test for parametric uncertainty; and
4. to use these results for robust controller synthesis.

To illustrate how the parabola test unifies the circle and Popov criteria, consider the plant G'in
a feedback configuration with uncertainty block A as shown in Figure 1. Introducing the multiplier
I+ Nsinto the loop yields the configuration in Figure 2. Applying positivity to the transfer function
(I + Ns)G now yields the familiar Popov test. Next consider the equivalent formulation shown in
Figure 3 which involves the introduction of an offset transfer function M; inparallel with A and in
feedback about G. The resulting configuration (Figure 4) now involves a shifted A (by M;) and a
bilinear transformation of G. Letting M; = 0 recovers the Popov formulation while N = 0 yields

the circle formulation. The simultaneous presence of both N and M, leads to the parabola test [2].

Although from a mathematical point of view the use of shifts and bilinear tansformations leads
to equivalent results, the use of these transformations can yield less conservative results in practice.
In addition, since these transformations do not commute with controller optimization techniques,

they must be introduced at an early stage prior to the synthesis procedure.



Notation
R Rrxs Rr
C,Crxa’cr
E, tl’, Orxg

A

Ly ()5, ( )

tr, ( ); Omax
S™,N",P"

Z1< 23,20 < Zy
Z1lr

IH ()]

real numbers, r X s real matrices, R™*!

complex numbers, r X 8 complex matrices, C™*}

expectation, trace, r X 8 zero matrix

complex conjugate of A € C

r X r identity, transpose, complex conjugate transpose

trace, spectral radius, largest singular value

r X r symmetric, nonnegative-definite, positive-definite matrices
Zy— 2, € Nr,Zz -Z1€P,2,,2,€8"

[tr ZZ*]'/? (Frobenius matrix norm)

(ar2m) [ G)Ra




2. Robust Stability and Performance Problems

. Let U C R™*™ denote a set of perturbations AA of a given nominal dynamics matrix A € R**".

We begin by considering the question of whether or not A + AA is asymptotically stable for all
AAe .

Robust Stability Problem. Determine whether the linear system
i(t) = (A+ AA)z(t), te€[0,00), (2.1)

is asymptotically stable for all A4 € U.

To consider the problem of robust performance, we introduce an external disturbance model
involving white noise signals as in standard LQG (H:) theory. The robust performance problem
concerns the worst-case Iz norm, that is, the worst-case (over U) of the expected value of a
quadratic form involving outputs z(t) = Ez(t), where E € R9*", when the system is subjected to

a standard white noise disturbance w(t) € R? with weighting D € R™%¢,

Robust Performance Problem. For the disturbed linear system

i(t) = (A + AA)(t) + Du(t), te€[0,00), (2.2)
2(t) = Ex(t), (2.3)

where w(:) is a zero-mean d—dimensional white noise signal with intensity I, determine a perfor-

mance bound S satisfying

J(U) = sup limsup E{||2(t)|3} £ 8. (2.4)
AAEU t—oo

As shown in Section 5, (2.2) and (2.3) may denote a control system in closed-loop configuration
subjected to external white noise disturbances and for which z(t) denotes the state and control

regulation error.

Of course, since D and E may be rank deficient, there may be cases in which a finite performance
bound S satisfying (2.4) exists while (2.1) is not asymptotically stable over U. In practice, however,
robust performance is mainly of interest when (2.1) is robustly stable. Next, we express the H,
performance measure (2.4) in terms of the observability Gramian for the pair (A + AA, E). For

convenience, define the n X n nonnegative-definite matrices

REETE, v£DDT.
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Lemma 2.1. Suppose A + AA is asymptotically stable for all AA € U. Then

J(U) = sup tr PasV = sup ||GA,,(3)(|§, (2.5)
AAEU AAEYU

where Pp4 € R®*"™ is the unique, nonnegative-definite solution to

0=(A+AA)TPas+ Pas(A+ADA4A)+ R, (2.6)

and
Gaa(s) & E[sI - (A+ AA)'D. 2.7
Proof. See [7,8]. O

In the present paper our approach is to obtain robust stability as a consequence of sufficient

conditions for robust performance. Such conditions are developed in the following sections.
3. Robust Stability and Performance via Parameter-Dependent Lyapunov Functions

The key step in obtaining robust stability and performance is to bound the uncertain terms
AAT P 4+ PasAAin the Lyapunov equation (2.6) by means of a parameter-dependent or adaptive
bounding function 2(P, AA) which guarantees robust stability by means of a family of Lyapunov
functions. As shown in [7,8], this framework corresponds to the construction of a parameter-
dependent Lyapunov function that guarantees robust stability. As discussed in [7,8], a key feature
of this approach is the fact that it constrains the class of allowable time-varying uncertainties thus
reducing conservatism in the presence of constant real parameter uncertainty. The following result

is fundamental and forms the basis for all later developments.

Theorem 3.1. Let {%: N* — S™ and FPy: U — S™ be such that

AATP 4+ PAA < 2(P) — [ATPy(AA) + Po(AA)A + AAT Py (AA) + Po(AA)AA],
AA€U,PeN", (3.1)

and suppose there exists P € N™ satisfying
0=ATP4+ PA+ %(P)+R (3.2)
and such that P + Py(AA) is nonnegative definite for all AA € U. Then

(A+ AA,E)is detectable, AA € U, (3.3)
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if and only if
A + AA is asymptotically stable, AA € U. (3.4)

In this case,

Paa < P+ Py(A4), AA€l, (3.5)

where Pp 4 is given by (2.9). Therefore,
J(U) < tr PV + sup tr Py(AA)V. (3.6)
AA€U

If, in addition, there exists P, € S such that

Py(AA) < Py, AA€, (3.7
then
J(U) <8, (3.8)
where
B & t|(P + By)V). (3.9)

Proof. We stress that in (3.1) P denotes an arbitrary element of N®, whereas in (3.2) P denotes
a specific solution of the modified Lyapunov equation. This minor abuse of notation considerably

simplifies the presentation. To begin, note that for all AA € R**", (3.2) is equivalent to
0=(A+AA)TP+ P(A+ AA) + 2(P) - (AATP + PAA) + R. (3.10)

Adding and subtracting ATPy(AA) + Po(AA)A + AATPy(AA) 4+ Po(AA)AA to and from (3.10)
yields

0=(A+ AA)T(P + Py(AA))+ (P + Po(AA)) A+ AA)
+ 20(P) ~ [ATPy(AA) + Py(AA)A + AATPy(AA) + Po(AA)AA] (3.11)
—(AATP + PAA) + R.

Hence, by assumption, (3.11) has a solution P € N™ for all AA € R**", If AA is restricted to the
set U then, by (3.1), the expression

Q(P) — [ATPo(AA) + Po(AA)A + AATPy(AA) + Po(AA)AA] - (AATP + PAA)
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is nonnegative definite. Thus, if the detectability condition (3.3) holds for all AA € U, then it
follows from Theorein 3.6 of [12] that (A+ AA,[R+ 2(P,AA) - (AATP + PAA)/?)is detectable
for all AA € U, where

2P, 0A) & 2(P) — [ATPo(AA) + Po(AA)A + AAT Ry (A A) + Po(AA)AA] (3.12)

It now follows from (3.11) and Lemma 12.2 of [12] that A + AA is asymptotically stable for all
AA € U. Conversely, if A+ AA is asymptotically stable for all AA € U, then (3.3) is immediate.
Now, subtracting (2.9) from (3.11) yields

0= (A+ AA)T(P + Py(AA) ~ Pas)+ (A+ AAYP + Po(AA) — Pay)
+ 2(P) — [ATPy(AA) + Po(AA)A + AAT P (AA) + Poy(AA)AA] (3.13)
- (AATP + PAA), AAc€l,

or, equivalently, since A + AA is asymptotically stable for all AA € U,

P+ Py(AA) — Pay = / eATaTE 0P AA) — (AATP + PAA)A+24 1 > 0, AA €L,
0
(3.14)
which implies (3.5). The performance bounds (3.6), (3.8) are now an immediate consequence of

(2.8), (3.5), and (3.7). O

Note that, with £2(P, AA) defined by (3.12), condition (3.1) can be written as
AATP + PAA < 2(P,AA), AA€U, PeN", (3.15)

where 2(P,A4)is a function of the uncertain parameters AA. For convenience we shall say that
2(-,+) is a parameter-dependent bounding function or, to be consistent with [7,8], a parameter-

dependent §2-bound.

Finally, we note that the parameter-dependent £2-bound framework establishing robust stability
given by Theorem 3.1 is equivalent to the existence of a parameter-dependent Lyapunov function
of the form

V(z) = 2T(P + Po(AA))z

which also establishes robust stability. For further details see [6-8].




4. ,Const'ruction of Parameter-Dependent Lyapunov Functions and Connections to the

Multivariable Parabola Criterion

In this section we assign explicit structure to the set U and the parameter-dependent bounding

function £2(-,-). Specifically, the uncertainty set U is defined by
U= {AA € R"*™: AA = ByFCy, where F € J}, (4.1)
where ¥F is a subset of the set f*', which is defined by

§ 2 {F e R™X™o; (F — Mp)T[(Mz — My)™' 4 (M2 — My)"T)(F = My) < (F = My) + (F - My)T}).

‘ : (4.2)
In (4.1) and (4.2), By € R**™° and Cp € R™°*" are fixed matrices denoting the structure of the
uncertainty, F' € R™°*X™0 jg an uncertain matrix, and M;, M, are given my X mo matrices such

that (Mz — M;)~1 exists.

Next, we digress slightly to provide simplified characterizations of the set J. Define the subset
Foof F by

Jo={FeF: det[l - (M; - M)"Y(F — M))] # 0}. (4.3)
Proposition 4.1. The set 5 is equivalently characterized by
Fo = {F € R™*mo: F=[I+ F(My— M) '] F + My,
where 7 ¢ R™o*™e  Jo 4 F'T > 0, and det[I + F(My — M;)™!] # 0}.

Proof. The proof is an immediate consequence of Proposition 4.1 of [7,8] with F replaced by

F - M;. O

In the special case that M, — M, is positive definite, it follows from Lemma 4.1 of [8] that the
condition det[f 4 J(My — M1)~!] # 0 in the definition of J is automatically satisfied. In this case,

we have the following norm bound inequality on F.
Lemma 4.1. Let F € ¥ and assume that M; — M; € P™°, Then

Umax(F - Ml) < amax(1u2 - Ml) (44)

Proof. First note that if F' € JF, then My — M; € P™°. In this case it follows from (4.2) that
0 < (F ~ M) {2(My = My) M )(F = My) < (F = My) + (F - M)
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llence, F' € T implies

,\m,x[(F; M) Z(F = M1)] < Amax[(F = My) + (F = M1)7], (4.5)

where Z £ 2(My — M1)~!. Now, since (F - M)TZ(F - My) and (F - My) + (F - M;)T are

nonnegative definite, (4.5) is equivalent to
Omax[(F = M1)TZ(F = M1)] € Omaxl(F — M1) + (F — M1)T] < 20max(F — M31). (4.6)
Next, since Z € P™, Apin(Z)I £ Z or, equivalently, oin(Z)I < Z. Hence (4.6) implies
Omin(Z)0max[(F = M1)T(F ~ M1)] = Omax[(F = M1)omin(2)I(F - My)]
< Omaxl(F = M1)T Z(F - My)]
< 20max (F — My). (4.7)
Using omax[(F — M1)T(F — My)] = 0, (F — My), (4.7) yields
Omin(2) 020 (F = M1) € 20 max(F — My), (4.8)
which proves (4.4). O

Next, we provide further simplification of the set F in the case in which F,M;,andM, are

symmetric and M, — M, is positive definite.

Lemma 4.2. Let F, M;, M,; € 8™ and M;—M; € P™°. Then (F—Ml)(MQ—Ml)_l(F—MI) <
F — M, if and only if M; < F < M,.

Proof. The proof follows as in the proof of Lemma 4.2 of [7,8]. ]

Thus, in the case in which F, M,, M; are symmetric and M; — M, is positive definite, the set
F defined by (4.2) becomes
F,2{FesS™: M; <F<M,}. (4.9)

Note that if F'in F is constrained to have the diagonal structure diag[F, F3,...,Fn,], then My; <

F; < My;, i = 1,...,mg, where My = diag[My1, Mi2,...,Mim,} and My = diag [Myy M2z, ..., M2, 11
More generally, F' may have repeated elements and/or blocks in the diagonal of the form diag.
(P, R, R, By Fgl

For the structure of U satisfying (4.1), the parameter-dependent bound §2(,) satisfying (3.12)

can now be given a concrete form. lowever, since the elements AA in U are parameterized by the
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clewients I"in g, for convenience in the following results we shall write Fy(1') in place of I'hy(AA).

Fu:thermore{we introduce a key definition that will be used in subsequent developinents.

Definition 4.1. Let M, My, N € R™oXmo_Then J and N are compatible if (I' = M,)TN is
symmetric for all F € F. Furthermore, ¥ and N are strongly compatible if, in addition, (F - M, YN
is nonnegative-definite for all F' € J.

| Finally, for the remainder of this paper we assume for simplicity that M; — M) is positive
definite. In this case it follows from Lemma 4.1 that there exists u € 8™ such that (F—M;)TN <
for all F € J.

Proposition 4.2. Let My, M,;, N € R™*X™0 be such that ¥ and N are compatible and
(My — My)™ = NCo By + [(M2 = My)™! — NCoBo]T > 0. (4.10)

Then the functions

2(P) = [Co + NCo(A + BoMiC) + BTP)™ [(My — My)™" = NCoBo + [(M2 — My)™* = NCoBo]"] ™

+[Co + NCo(A + BoMiC) + BI P} + PBoM,Co + CIMI BT P, (4.11)
! N VL

Py(F) = Cg (F — M1)TNC,, (4.12)

satisfy (3.1) with U given By (4.1).

Proof. Since by (4.3) (M3 — M;)™! = NCoBo + [(M; — M)~ - NCoBo)T > 0 and by (4.2)
F— M+ (F - M)T - (F = M)T[2(M; — My)7}|(F — My) > 0 it follows that

0 < [[Co+ NCo(A + BoM;1Co) + B P} = [(Mz = My)™' = NCoBo + (Mz — My)™! = NCoBo)T)(F — M, )CO]T
[(My = My)™ = NCoBo + (M — My)™" = NCo Do) ]!
. [[co + NCo(A + BoM1Cy) + bg‘P] —[(Mz = My)™' = NCoBo + ((Mz — M)~ - NCOBO)T](F - Ml)Co]

+Cq [(F = My)+ (F = My)T — (F - My)T[2(M; — M1)™)(F = M1)] Co

= 2(P) = PBoM,Co — Cf MIBI P — [Co 4+ NCo(A + BoM,Co) + BY P]¥(F — M;)Co
- C(F = M1)T[Co + NCo(A + BoM1Co) + BY P)
+ CF(F — M)T[(My — My)™' = NCoBo + ((My — My) — NCoBo)T)(F = M;)Co
+ CF[(F = My + (F = My)T — (F — M) [2(M2 — M1)7})(F — M})]Co

= 2o(P) = ATCINT(F — My)Co — CEMIBICEINT(F — My)Co — PByFCo
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— CX(F — My)*NCoA - CI(F — My)TNCoBoM;Co — CF FTBI P
- = CX(F = My)TNCoBo(F — My)Co — CX(F — My)T BTCTNT(F — M;)Co
= Q(P) — [ATPy(F) + Po(F)A + AATPy(F) + Po(F)AA) - [AATP + PAA],

which proves (3.1) with U given by (4.1). O

Remark 4.1. Note that by setting M; = 0, one recovers the parameter-dependent §2-bound
considered in [7,8] which corresponds to a generalized multivariable version of the Popov criterion

for linear uncertainty.

Remark 4.2. Note that, unlike the results of [7,8], Po(0) = —Cf M NCy # 0 and $2(P)
is not nonnegative definite. For further discussion on indefinite parameter-dependent £2-bounds

resulting in indefinite Riccati/Lyapunov type equations sce [4].
Next, using Theorem 3.1 and Proposition 4.2 we have the following immediate result.

Theorem 4.1. Let M;, Mz, N € R™0X™0 be such that J and N are strongly compatible and

(4.3) is satisfied. Furthermore, suppose there exists a nonnegative-definite matrix P satisfying

0= (A + BO_MIQO)TP + P(A‘-l- BoMlco)
+[Co + NCo(A + BoM;Co) + BE PI¥[(My — My)™ — NCoBo + (M — My)™! — NCOBO)T]"
+[Co + NCo(A + BoM,Co) + BY P] + R. (4.13)

Then
(A+ AA,E)is detectable, A4 €U, (4.14)

if and only if

A 4+ AAis asymptotically stable, AA € U. (4.15)
In this case,
J(U) < tr PV + sup tr Cf (F — M1)TNCo < tr[(P 4 CTuCo)V]. (4.16)
FeF

Proof. The result is a direct specialization of Theorem 3.1 using Proposition 4.2. We only note
that Po(AA) now has the form Py(F) = C(',r(F — M1)TNCy. Since by assuption (F-M)N>0
for all F € Fit follows that P+ Py(F) is nonnegative definite for all F' € F as requred by Theorem
3.1. ‘ O
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R.em;n'k 4.3. 'The condition that (F — M})*N = NT(' - M;), F € J, rcpresents an
inltimafé-relatjonsl\ip between the matrix N and the structure F. For example, if F = FyI,,,, and
Mll = MImo;l then N can be an arbitrary nonnegative-definite matrix. Alternatively,if N = Nolp,,
then F — M; may be nondiagonal. Of course, F' — M; and N may have more intricate structure,

for example, they may be block diagonal with commuting blocks situated on the diagonal.

Next, we establish connections between the parameter-dependent bounding function formed
by (4.11) and (4.12) and the classical parabola test [2,10]. Furthermore, by exploiting results from
positivity theory it is possible to guarantee the existence of a positive-definite solution to (4.13).

First, however, we present additional notation and definitions and a key lemma concerning strongly

60~ [54-5)

denote a state space realization of a transfer function G(s), that is, G(s) = C(sI — A)"*B + D.

positive real transfer functions. Let

«!

. nin . . . ' - .
The notation “~”denotes a minimal realization. Furthermore, an asymptotically stable transfer

function is a,"t.'ransfer function each of whose poles is in the open left half plane.

A s_;i‘qa_ré_lgltransfer fuxilqtion G(s) is called positive real [1, p. 216] if 1) all poles of G(s) are
in the cildsed ieft half plane and 2) G(s) + G*(s) is nonnegative definite for Re[s] > 0. A square
trailsfer‘fu11cti§11 G(s) is called strictly positive real [9,11]if 1) G(s) is asymptotically stable and 2)
G'(]w) +G*(jw)is positivé definite for all real w. Finally, a square transfer function G(s) is strongly
positive real if it is strictly positive real and D + DT > 0, where D £ G(00).

Lemma 4.3. Let G(s) S [é’ IB;] . Then the following statements are equivalent:
i) A is asymptotically stable and G(8) is strongly positive real;

i) D+ DT > 0 and there exist positive-definite matrices P and R such that

0=ATP+PA+(C-B™P)"(D+D")"(C-BTP)+R. (4.17)

Proof. See [5]. ' O

Next, using Lemma 4.3 we obtain a sufficient condition for the existence of a solution to (4.13).

A+ ByM,Cy | - 1) ] FAj
i Co + NCo(A+ BoMiCo) | (My—My) 1 = NCoBo| " 418
asymptotically stable and G(s) is strongly positive real then there exists an n X n matrix P > 0

Theorem 4.2. Let G'(s) min [
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satxsfymg (4 13).: Conversely, if 2(M; = M;)™! = [NCoBo + NCoDBo] > 0 and there exists P > 0
: satlsfymg (4. 13) for-all B > 0 then A is asymptotically stable and G(s) is strongly positive real

Proof. The proof is an unmediate consequence of Lemma 4.3. O

Next, we show that Theorem 4.1 is a generalization of the classical parabola test [2] for the
case in which the loop sector-bounded nonlinearity is used to represent uncertainty. First, how-
ever, we provide a generalization of the parabola criterion for multivariable systems with diagonal
nonlinearity structure. Specifically, we define the set & characterizing a class of sector-bounded
memoryless time — invariant nonlinearities. Let My, M, and M; — M, be given positive-definite

diagonal matrices and define
P2 {¢: R™0 — R™°: (¢ — My)T[(M2 — M) (¢ — Myy)—y] <0, y €R™,
and ¢(y) = [#1(v2), #2(v2), -, brma (¥mo )] } -

Note that for M1 = diag[m,,my,...,my, ] and M, = diag[m;,ma, ..., Mm], m;, 7 > 0, ¢ =

1,...,mp, it follows that each component ¢;(y;) of ¢ satisfies

ﬂliy? S ¢€(yi)yi Smiyi2$ Yi € Rv t= 1"' +y N1o.

Theorem 4.3. (The Multivariable Parabola Criterion). If there exigts a nonnegative-
definite diagonal matrix N such that (Mz — M)~ 4 (I + Ns)(I + G(s)M1)7'G(s) is strongly
positive real, where G(s) "~ [H] , then the negative feedback interconnection of G(s) and
¢(+) is asymptotically stable for all ¢(-) € &.

Proof. First note that the negative feedback interconnection of G(s) and ¢(-) has the state-

space description

£(t) =Az(t) - Bé(y(1)), (4.18)
y(t) =Cz(t). (4.19)

Now, noting that [I+ G(s)M1]~?G(s) corresponds to a plant G(s) with feedback gain M;, it follows
from feedback interconnection manipulations that a minimal realization for [I + G(s)M;]"1G(s) is

given by

[+ M 6(s) ™ |

1

A— BMC | B]
C [ ol
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Smularly, noting that sG’(s) [C/}T-I_Cl';}] it follows that (Mg—Ml)“+(I+Ns)(I+G(8)M1)‘1G(s)|
i

‘ ‘l'mlsl a 1mxuma.lvrealnlzat101‘1 glycn by

ot

' A— BM,C | B ]
[C +NC(A- BM;C) | (M2—- M)+ NCB

Now it follows from Lemma 4.3 that since (Mz — M1)~! + (I + Ns)(I + G(s)M1)~'G(s) is strongly

| positive real there exist positive-definite matrices P and It such that

0=(A-BMC)TP+ P(A- BM;C)
. -1
+[C+ NC(4 - BMC) - BYP*((M; — My)™ + NCB + (Mz - My) ™ + NeB)'
.[C+ NC(A - BM,C) — B*P| +R. (4.20)

Next, for ¢ € & define the ‘Lyapunov function

%:V(x) =z Pz + 22 /[45.'(0) — m;0]Nido. (4.21)

?

The corespondmg Lyapunov derivative is given by

‘V(:;) = zT(ATP + PA)z — ¢TBT Pz — 2T PB + 2(¢ — M1y)*Ny. (4.22)

i

1
n
[

| Next usmg (4. 20), notmg that y = CAz — C B¢, and adding and subtracting 2(¢ — Miy)T (M, -
My)~N(é- Miy), Ab—Miy)Ty, 25TCTMNC B¢, 2T ATCTN M, Cz, 257 CTM; BTCTN$, and

2:1:TCTMlBTCTNM10z‘ to and from (4.22) it follows (after some algebraic manipulation) that
|
/ — T T T -1
V(z)= -z Rz -z 2+ 2(¢ — Mry) [(M2 — M1)™" (¢ — M1y) — ),

where
2 2[(My = My)™ + NCB + (M2 — M)™* + NCB)"|"V*(C + NC(A - BM;C) ~ BT Pz
— [(M; = My)™! + NCB + (M — My)~* + NCB)"]'/?[¢ — M;Cx).

Since I is positive definite and (¢ — M1y)T[(M2 — M1)7 (¢ — M1y) — y] < 0 it follows that V(z)

is negative definite. ! O

In order to specialize the result of Theorem 4.3 to robust stability with constant linear param-

eter uncertainty, consider the system

#(t) = (A+ AA)(1), (4.23)
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whcrc AA € U aml Uis dd'mul by

. ZII § e

:.1 i | u = {AA: AA = —BFC, F= diag[F1,F2, .Fmo], 7"/ E Sm|, i= 1,-'-,7710}'

It now follows from Theorem 4.3 by setting ¢(y) = Fy = FCz that A+ AA is asymptotically
stable for all A4 € U.

It has thus been shown that in the special case that F' and N are diagonal nonnegative-definite
matrices, Theorem 4.1 (with By replaced by — Bp) specializes to the multivariable parabola criterion
when applied to linear parameter uncertainty. This is not surprising since in this case the Lyapunov

function (4.21) that establishes robust stability takes the form

mo yi
V(z)=2TPz + 22/ (£ = m;)oNido, yi = (Coz)i, (4.24)
i=170
or, equivalently, .
o :3 |l V(z) = 2T Pz +2TCJ(F — M;)NCoz (4.25)

and thus is'a specxa.l case of the parameter-dependent Lyapunov function discussed earlier. Note

that the uncerta.m parameters are not allowed to be arbitrarily time-varying, which is consistent

w1th the fact tha.t the classma.l parabola criterion is restricted to time-invariant nonlinearities. .

Tk ;Fmally, we note that in the case in which M; = 0, Theorem 4.3 specializes to the multlvarl-

, .\able Popov Lrll,(,non considered in [7,8]. Alternatively, retaining M; and setting N = 0 ynelds

a strongly positive real requirement on (Mz — M;)~?! + (I + G(s)M;)~'G(s) or, equivalently,
(I + G(s)M3)(I + G(s)M1)™'] which corresponds to the multivariable circle criterion considered
in [6] with the restrictions that M;, M; be diagonal and positive-definite.

5. Robust Controller Synthesis via the Parabola Riccati Equation

In this section we introduce the Robust Stability and Performance Problem with static output
feedback control. This problem involves a set U C R"*™ of uncertain perturbations AA of the

nominal system matrix A.

Robust Stability and Performance Problem. Given the nth-order stabilizable plant with

constant real-valued plant parameter variations
z(t) = (A+ AA)z(t) + Bu(t) + Dw(t), t € [0,00), (5.1)

y(t) = Cz(1), (5-2)

15




- where u(t) € R™, w(t) € RY, and y(t) € RY, determine a static output feedback control law

. .
[T . LA }

e

S I u(t) = Ky(t) (53)

. . that satisfies the following design criteria:

| i) the closed-loop system (5.1) - (5.3) is asymptotically stable for all AA € U, that is, A+
BKC + AA is asymptotically stable for all AA € U; and

i) the performance functional

J(K) = As:guliir_lgp-:- E {/[zT(s)Rlx(s) + uT(.s)Rgu(s)]ds} (5.4)
0

is minimized.

st
ut e
s

L TR CE I AR

i £(t) = (A + DA)(t) + Du(t), € [0,00), (5.5)

For‘veach.vfariatiqn AA €U, the closed-loop system (5.1)-(5.3) can be written as

g s b L A2 A+ BKC, (5.6).

T
P 1
[ '

and where the white noise disturbance has intensity V = DDT. Finally, note if A+ AAis asymp-

| f"totic:‘z-x‘lly stable for all AA € U for a given K, then (5.4) can be written as

J(K) = As::gu tr PaaV, (5.7)

where Pp 4 satisfies (2.6) with A replaced by Aand R replaced by

RER +CTKTRKC. (5.8)

To apply Theorem 4.1 to controller synthesis we consider the performance bound (3.9) in place
of the actual worst-case H; performance as in Theorem 4.1 with A, R replaced by A and R to

address the closed-loop control problem. This leads to the following optimization problem.

Auxiliary Minimization Problem. Determine X € R™*! that minimizes

J(K) = u[(P 4 CTpnCo)V) (5.9)
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': ‘,subJect to R
" !} i i 0 (A + BoMlco)TP + P(A + BoM;Co)
L #[Co+ NCo(A+ BoMiCo) + BY PIT[(My — My)™ — NColio + ((Mz = My)™ = NCoBo) ']

+[Co + NCo(A + BoM1Co) + By P+ R. (5.10)

It follows from Theorem 4.1 that the satisfaction of (5.10) along with the detectability condition
(/i + AA,J:’.) leads to closed-loop robust stability along with robust lI; performance.

~ Next, we present sufficient conditions for robust stability and performance for the static output
feedback case. For arbitrary P,@ € R"*" define the notation
Ro (M, = M;)™! = NCoBo + ((Mz — My)™ = NCoB,)™,
Rya SRy + BYCFNTRF'NCo B,
P, ..BTP + BTCTNTRG'Co + BTC{ NTRF'NCo(A + BoM1Co) + BTC{ NT Ry By
:’L» v "QC'T(C'QC ) 116' vy 21, —v,
j“thleulhdlcated mverses e)ust

)
|-

Tﬂeof‘em 5 1 Assurrlle Ry > 0 and assume F and /N are strongly compatible. Furthermore,

O
o
N
+
by
(=]
§
S
+
o]
(=]
I~
O
S
+
&
(=]
B
=
- 8
b
+
&
X
£
"c

+ P[A + BoM;Co + Boli5'Co + BoRg ' NCo(A + BoM;Co)] + Iy

+[Co + NCo(A + BoM1Co)|* Ry [Co + NCo(A + BoM;Cy))

+ PByRy*Bf P - PIR;} P, —vIPIR;} Py, (5.11)
0 =[4 — BR;!P,v + BoM1Co + BoR; NCo(A — BR;)Pav + BoM,Co) + BoR5'Co + BoR3' BT PIQ

+ Q[A = BR;}P,v 4+ ByM;Co + BoRy*NCo(A — BR;} Pav + ByM,C))

+ BoRy'Co + BoRy ' B P]* +V, (5.12)

and let K be given by
K = -R;}P,QC*(CcQC™)1. (5.13)

Then (/i + AA,R) is detectable for all AA € U if and only if A + AA is asymptotically stable for
all AA € U. In this case the closed-loop system performance (5.7) satisfies the bound

i

- J(K) < tr[(P + Cg pCo)V]. (5.14)
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O

b ;‘tro_ll:ers for robust stability and performance. These conditions comprise a system of one modified
: ) algebraic Riccati equatioh and one modified Lyapunov equation in variables P and @, respectively.
i' 'ivFinally, note when solving (5.11) and (5.12) numerically, the matrices M;, M; and N and the struc-

. ture matrices By and Cp appearing in the design equations can be adjusted to examine tradeoffs
‘between performance and robustness. 1o further reduce conservatism, one can view the multiplier
matrix N as a free parameter and optimize N with respect to the worst case H; performance bound

~J. In particular, computing 2J/2J = 0 yields

0=1/2uCoVCqT +[(M~! = NCoBy) + (M~ — NCoBy)]™}
: _[co + NCo(A + - BoMiCo) + BI P]Q(A + BoM1Co)*CF
[(M I—Ncguo)+(M- — NCoBo)T]"Y[Co + NCo(A + BoM Co) + BE PQ

[co + NCO(A + BoMlco) + BYPT[(M™" = NCoBo) + (M~ = NCoBo)T] "' BICT.

value of N for that controller lence, this design procedure will involve an interaction between

f i contxoller desxgn and evaluatlon of the multiplier N until convergence in N is achieved.

Next, we specialize Thcorcm 5.1 to the full-state feedback case. When the full state is available,

. thatis, C = I, the projection v = I so that v; = 0. In this case (5.13) becomes
K =-R;lP, (5.15)
and (5.11), (5.12) collapse to the single equation

0 =[A + BoM,Co + BoRg Co + Boltg " NCo(A+ By M;Co)]" P
+ P[A + BoM;,Cy + BoRo-lCo + B()RO_INCQ(A + B()Mlco)] + It
+[Co + NCo(A + BoM1Co)]* RG[Co + NCo(A + BoM;1Co)]

+ PBoRg'BY P — PFR;} P,. (5.16)
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6. Dynarhic Output Feedback Controller Synthesis

In this section we introduce the Dynamic Robust Stability and Performance Problem. For
simplicity we restrict our attention to controllers of order n, = n, that is, controllers whose order

is equal to the dimension of the plant

Dynamic Robust Stability and Performance Problem. Given the nth-order stabilizable

and detectable plant with constant structured real-valued plant parameter variations
z(t) =(A + AA)z(t) + Bu(t) + Diw(t), t 20, (6.1)
y(t) =Cz(t) + Daw(t), ' (6.2)
where u(t) € R™,w(t) € R¢, and y(t) € R¢, determine an nth-order dynamic compensator

£o(t) =Acze(t) + Bey(t), (6.3)
u(t) =Cez.(1), (6.4)

that satisfies the following design criteria:
i) the closed-loop system (6.1)-(6.4) is asymptotically stable for all AA € U; and
ii) the performance functional (5.4) with J(K) replaced by J(4., B.,C.) is minimized.
For each uncertain variation A4 € U, the closed-loop system (6.1)-(6.4) can be written as
#(t) = (A+ AA)&(t) + Dw(t), t>0, (6.5)

where

-~ a CE(t) iy A BCC o AA Onxnc
S B0 FEE o R B P £

and where the closed-loop disturbance Dw(t) has intensity

V =DDT,

D,
B.D,
uncertainty AA has the form

where D = [ ] V& [Vl 0 ],Vl = Dy DT, Vo = D,;DY. The closed-loop system

0 B.V,BT

AA = ByFC, (6.6)

where

By = [0 Bo ] , CoZ[Co Omgxn,)-

neXmo
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Fina.liy, if A+AA is asymptotically stable for all AA € U for a given compensator (A, B, Ce),

then the performance measure (5.4) is given by
J(Ac, Be,Ce) = JSup b Py av, | (6.7)
where P, ; satisfies the 2n x 2n algebraic Lyapunov equation
0=(A+AA)TP, ; + Py ;(A+AA) + R, (6.8)

where
. R P
E=[E, E;)C), R=F E:[ T C].
[+

Next, we proceed as in Section 5 where we replace the Lyapunov equation (6.8) for the dy-
namic problem with a Riccati equation that guarantees that the closed-loop system is robustly
stable. Thus for the dynamic output feedback problem, Theorem 4.1 holds with 4, R,V replaced
by fi, R, V.

For convenience in stating the main result of this section, recall the definitions of Ry, R4, P,

and define the additional notation
r=Cc, ¢,

AQ 2 A- QX 4+ BoRg'NCo(A+ BoM,Co) + BoR3 B P + BoR3'Co + BoM,Co,
for arbitrary Q, P € R**",

Theorem 6.1. Assume Ry > 0 and assume F and N are strongly compatible. Furthermore,

suppose there exist n X n nonnegative-definite matrices P,Q,f’ satisfying

0 =[A + BoM;Co + BoR3'Co + By Ry NCo(A + ByM,Co)]* P
+ P[A + BoM1Co + BoRg'Co + BoRg ' NCo(A + BoM;Co)] + I
+[Co + NCo(A + BoM;Co)|* Ry "[Co + NCo(A + BoM,Co)]

+ PBoRy' By P — PR3} P, (6.9)

0 =[A+ BoM1Co + BoRg'BJ (P + P) + BoRy'NCo(A + BoM;Co))Q (6.10)
+ Q[A+ BoMiCo + BoR5' By (P + P) + BoRy'NCo(A + BoM Co)|T + Vi - QEQ,

0=ALP + PAg+ PBoRG'BE P + PIR;} P, (6.11)
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and let A;, B., C. be given by

A.=A—- QL - BR;}P, — BoR;'NCoBR;} P,

4+ BoRg'NCo(A + BoM,Co) + BoRy'Co + BoM,Co + Bo Ry By P, (6.12)
B, =QCTVv;, (6.13)
C.=-R;!P,. (6.14)

Then (/i + AA, E) is detectable for all AA € U if and only if A + AA is asymptotically stable for
all AA € U. In this case, the performance of the closed-loop system (6.5) satisfied the bound

J(Ac, Be,Ce) S tr{(P + PV + PQEQ + Cg uCoVi) (6.15)

Proof. The proof follows as in the proof given in [7]. a

Remark 6.1 Note that if the uncertainty in the plant dynamics is deleted, that is, By =

0, Co = 0, then Theorem 6.1 specializes to the standard LQG result.
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Letters

Robust Stability Analysis Using the Small Gain, Circle,
Positivity, and Popov Theorems: A Comparative Study

Wassim M. Haddad. Emmanuel G.
Collins, Jr., and Dennis S. Bernstein

Abstract— This note analyzes the stability robustness of a Maximum
Entropy controller designed for a benchmark problem. Four robustness
tests are used: small gain analysis, circle analysis, positive real analysis,
and Popov analysis, each of which is guaranteed to give a less conservative
result than the previous test. The analysis here is performed graphically
although recent research has developed equivalent tests based on Lya-
punov theory. The Popov test is seen, for this example, to yield highly
nonconservative robust stability bounds. The results here illuminate the
conservatism of analysis based on traditional smali-gain type tests and
reveal the effectiveness of analysis tests based on Popov analysis and
related parameter-dependent Lyapunov functions.

I. INTRODUCTION

In control engineering practice, control design (whether classical
or modern) is usually predicated upon some nominal (usually linear)
model of the plant 10 be controlled. However, this nominal model
of the system is never an exact representation of the true physical
system. This necessitates tools that allow a control system to be
analyzed for robustness with respect to errors in the design model.
These analysis tools almost always lead to techniques for actually
designing a control system for robustness.

In classical control, gain and phase margins are often used as
indirect measures of robustness. However, these criteria do not
always adequately provide robustness with respect to the true plant
uncertainties. Hence. to add reliability to the analysis process, more
direct and rigorous measures of robustness are needed. To guarantee
the best performance possible. in the presence of uncertainties in
the system model. it is important that these robustness measures be
nonconservative.

In the analysis of svstems for robustness, the conservatism of the
resulting robust stability and performance bounds is largely dependent
upon the characterization of the uncertainty in the analysis process.
This uncertainty characterization can be viewed as lying between
two extremes. In the state space. one extreme would be to model the
uncertainty as constant. real parameters while the opposite extreme
would be to model the uncenainty as arbitrarily time-varying. real
parameters. In the frequency domain, the corresponding extremes are
to model the uncertainty as a transfer function with bounded phase
or oppositely, as a transfer function with arbitrary phase.

If the uncertainty is truly constant and real, then modeling it as
arbitrarily time-varying can lead to very conservative results. For
example. classical analysis of a Hill's equation (e.g.; the Mathieu
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work was supported in part by the National Science Foundation under Grant
ECS 9109558. by the Air Force Office of Scientific Research under Grant
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G(s)

Q

Fig. 1 Standard uncertainty representation.

equation) shows that time-varying parameter variations can desta-
bilize a system even when the parameter variations are confined
to a region in which constant variations are nondestabilizing (1).
Also, as seen in [2] which analyzes stiffness uncerainty for a
flexible structure, when uncertainty is modeled as having arbitrary
phase, predictions for stability and performance will be much more
conservative than results developed assuming phase-bounded (e.g..
positive real) uncertainty.

In recent years it has become conventional to model plant uncer-
tainty, say Ak, using the feedback configuration shown in Figure
1. In this figure G(s) denotes the nomina! plant. Four of the most
fundamental results concerning stability of feedback system intercon-
nections are the small gain, circle, positivity, and Popov theorems
[1, 3]). Even though these theorems were originally developed to
analyze stability of system with a single, memoryless nonlinear
element in a feedback configuration [1]. in recent research [3. 4]
each result was reinterpreted and generalized to the problem of robust
stability involving linear uncertainty. To do this. a Lyapunov function
framework was established. providing connections of these classical

* results to robust stability and performance via state space methods.

As shown in [3], the main difference between the small gain.
circle, and positivity theorems versus the Popov theorem is that
the former results guarantee robustness with respect to arbitrarily,
time-varying uncertainty while the Popov theorem restricts the time
variation of the uncertainty. This is not surprising once one recognizes
that the Lyapunov function foundation of the small gain. circle,
and positivity theorems is based upon conventional or ‘‘fixed”
quadratic Lyapunov functions which. of course. guarantee stability
with respect to arbitrarily. time-varying perturbations. In contrast. the
Popov theorem is based upon a quadratic Lyapunov function that is a
function of the parametric uncertainty. that is, a parameter-dependent
quadratic Lyapunov function [3, 4]. Hence, in effect. the Popov result
guarantees stability by means of a family of Lvapunov functions. A
key aspect of this approach [4] is the fact that it does nor apply to
arbitrarily time-varying uncertainties, which renders it significantly
less conservative than fixed quadratic Lyapunov functions in the
presence of constant real parameter uncertainty.

To illuminate the conservatism of robustness analysis based on
traditional small-gain type tests for constant real parameter un-
certainty and 1o reveal the importance of tests which restrict the
time-variation in the state space and thus allow the incorporation
of phase information in the frequency domain. we consider a simple
two-mass/spring. lightly damped. system with uncertain stiffness [5).
This example was chosen to highlight the inherent drawbacks of
small gain principles applied to the analysis of feedback sysiems with
constant real parameter uncertainty. A quadratic Lyapunov function
framework leading to an algebraic basis in terms of matrix Riccati

1063-6536/93503.00 © 1993 IEEE
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Fig. 2 Spring-mass systemn.

equations for the analysis and synthesis of robust controllers for the
small-gain, circle, positivity, and Popov theorems is given in [3, 4].
Nevertheless, for simplicity the analysis presented here is graphical.

II. TWO-MASS/SPRING EXAMPLE

Consider the two-mass/spring system shown in Figure 2 with
uncertain stiffness k. A control force acts on body 1, and the
position of body 2 is measured resulting in a noncolocated control
problem. Here, we consider Controller \#1 of [6, 7] which was
designed for Problem W# 1 of a benchmark problem (5] using the
Maximum Entropy robust control design technique. The controller
transfer function given by

_194390(s + 0.33679)[(s — 0.11735) + 0.90996"]
T (s + 81.438)(s + 131.04)[(s + 2.9049)? 4 1.8615]

H(s) (1)

was designed so that the closed-loop system is robust with respect to

perturbations in the nominal value of the stiffness & (i.e., k = knom)-
The exact stiffness stability region over which the system will remain
stable was computed by a simple search and is given by

0.4459 < k < 2.0660. (2)

Next, using a graphical approach we apply small gain analysis, circle
analysis, positive real analysis, and Popov analysis to determine the
stiffness stability regions predicted by each of these tests. Each of
these tests is related to the previous test and is guaranteed to be less
conservative.

We begin by constructing the uncertainty feedback system that will
be used in each of the tests. The plant (for m; = m. = 1) is given
by the triple (A(k), B, C) where

0 0 10 0
0 0 01 0

A(k) = “t k o0 ol B= 1| C=[0100]. (3)
k -k 00 0

The perturbation in A(k) due to a change in the stiffness element k
from nominal value knom is given by

A(k) = A(knom) 2 AA = BoAkCo (4)

where B =[00 —1 1] and Co = [1 — 10 0]. In the subsequent
analysis we will choose kaom = 0.6 since the controller (1) was
developed under this assumption.

Let the triple (A, Bc, C.) denote the state space representation of
the controller (1). Then, assuming negative feedback, the closed-loop
state matrix is given by

A(k) chc]. 5)

Ak) = [BCC A,
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SMALL GAIN ANALYSIS
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Fig. 3 Small gain analysis.

Next, define Bf = [Bi Oixs), Co = [Co Oixs] and let
G(s) = =Co(sI = A(knom)) ™' Bo. Then, the plant uncertainty Ak
can be represented by a fictitious feedback loop as shown in Figure 1.

For each of the tests below we will determine A% (positive) and
Ak (negative) such that stability is guaranteed for

Enom + Ak < k < knom + AK. (6)

Small Gain Analysis

_ Small gain analysis requires considering the Nyquist diagram of
G(s). The smallest circle centered at the origin that completely
encompasses the Nyquist diagram, Im[G(jw)] vs. Re[G(jw)] for all
w, (without touching it) is then drawn. The intersection of this circle
with the negative real axis is given by ~1/Ak and the intersection
with the positive real axis is given by —1/Ak. This analysis is shown
in Figure 3. It follows that A%k = 0.1496 and Ak = —0.1496. Hence,
using small gain analysis, stability is guaranteed for

0.4504 < k < 0.7496. (7)

Note that since the Ak uncertainty block is comprised of a single
scalar, this result is equivalent to a u-analysis test [8].

Circle Analysis

As in small gain analysis, circle analysis determines stability
bounds by drawing a circle that completely encompasses the Nyquist
diagram (without touching it). However, the circle criterion allows
the center of the circle to lie anywhere along the real axis and can
hence give a less conservative bound Ak (or Ak) at the expense of
increased conservatism in the remaining bound Ak (or Ak). Here
we choose the center of the circle to lie at ((Zmin + Imax)/2.0)
where Tmin is the minimum real part of the Nyquist diagram and
Imax is the maximum real part. The intersection of this circle with
the negative real axis equals —1 /AE and the intersection with the
positive real axis equals by —1/Ak. This analysis is shown in Figure
4. It follows that A% = 0.3167 and Ak = —0.1277. Hence, using
circle analysis, stability is guaranteed for

0.4722 < k £ 0.9167. (8)
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CIRCLE ANALYSIS
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Fig. 4 Circle analysis.

Positive Real Analysis

Positive real analysis determines stability bounds by drawing
straight-lines that lie to the left or right of the Nyquist diagram
(without touching it). It is equivalent to the limit of the circle criterion
as the center of the circle moves toward infinity along the positive
or negative real axis and will always give less conservative bounds.
For the Nyquist diagram of G(s), the intersection of the line to the
left of the Nyquist plot with the negative real axis equals ~1/Ak.
The intersection of the line to the right of the Nyquist plot with the
positive real axis equals —1/Ak. This analysis is shown in Figure
5. It follows that Ak = 0.5277 and Ak = —0.1522. Hence, using
positive real analysis, stability is guaranteed for

0.4478 < k < 1.1277. (9)

Popov Analysis
Popov analysis is a test that determines a stability bound from a
modified Nyquist diagram. namely the Popov plot. wIm[G(jw)] vs.
Re[G(j.u)] for w > 0. This analysis requires finding lines (Popov
lines) that intersect the negative or positive real axis at a point that
is to the left of the Popov plot but as close to the origin as possible.
The slope of these lines are —1/N and —1/N where N and N are
the Popov multipliers. The Popov test is equivalent to the positive
real test if the lines are chosen to be vertical. For the Popov diagram
of G(s), the intersection of the line 10 the left of the Popov plot with
the negative real axis equals —1/Ak. The intersection of the line to
the right of the Popov plot with the positive real axis equals —1/Ak.
This analysis is shown in Figure 6. It follows that Ak = 1.4660
and Ak = 0.1541 and the corresponding Popov multipliers are
respectively N = 0.7999 and N = —0.2755. Hence, using Popov
analysis. stability is guaranieed for ‘
0.4459 < k < 2.0660. (10)
Note that these bounds are identical 10 the exact bounds (2). at
least to four-digit precision for the lower bound and five digit
precision for the upper bound. Hence, for this example, Popov

POSITIVE REAL ANALYSIS
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Fig. 5 Positive rea] analysis.
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Fig. 6 Popov analysis.

analysis yielded highly nonconservative results. This is not surprising
since, as mentioned in the Introduction, the Popov result is based upon
a parameter-dependent Lyapunov function which severely restricts the
allowable time variation of the uncertain parameters and hence closely
approximates real parameter uncertainty within robustness analysis.

III. ConcLusion

We have shown by means of a simple two-mass/spring example
with uncertain stiffness that small gain modeling of constant real
parameter uncertainty can be extremely conservative. An alternative
approach to the phase information/real parameter uncertainty problem
using Popov analysis and related parameter-dependent Lyapunov
functions was shown to be significantly less conservative. Although
Popov analysis was traditionally developed to analyze stability of a
system with a single. memoryless nonlinear element in a feedback
configuration, recent results have reinterpreted Popov analysis 1o
handle the problem of robust stability involving consiani. linear
uncertainty [3, 4).

y
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The results here demonstrate the somewhat overlooked fact that
Popov analysis can be very nonconservative when applied to the
analysis of linear systems with linear uncertainty.

~Finally, it should be acknowledged that the results of (3, 4)
allow Popov analysis to be used to synthesize robust controllers.
This problem of robust control can, of course, be alternatively
approached using adaptive control techniques {9, 10] which implicitly
or explicitly identify the model uncertainty. It is possible that the
results discussed in [3, 4] can be used as a basis for using Popov
analysis to determine the stability and robustness properties of
adaptive controllers.
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In recent years, small gain (or Ho) analysis has been used to analyze feedback systems for robust stability and
performance. However, since small gain analysis allows uncertainty with arbitrary phase in the frequency
domain and arbitrary time variations in the time domain, it can be overly conservative for constant real
parametric uncertainty. More recent results have led to the development of robustness analysis tools, such as
extensions of Popov analysis, that are less conservative. These tests are based on parameter-dependent Lya-
punov functions, in contrast to the small gain test, which is based on a fixed quadratic Lyapunov function. This
paper uses a benchmark problem to compare Popov analysis with small gain analysis and positivity analysis (a
special case of Popov analysis that corresponds to a fixed quadratic Lyapunov function). The state-space
versions of these tests, based on Riccati equations, are implemented using continuation algorithms. The results
show that the Popov test is significantly less conservative than the other two lests and for this example is
completely nonconservative in terms of its prediction of robust stability.

I. Introduction

NE of the most important aspects of the control design

and evaluation process is the analysis of feedback sys-
tems for robust stability and performance. Over the past sev-
eral vears, significant attention has been devoted to the use of
small gain (or H.,) tests for robustness analysis.!-* However, it
is well known that these tests can be very conservative since in
the frequency domain the small gain test characterizes uncer-
tainty with bounded gain but arbitrary phase, whereas in the
time domain the small gain test characterizes uncertainty with
arbitrary time variation.® This conservatism has led to the
search for more accurate robustness tests. In particular, re-
searchers have searched for tests that allow frequency domain
uncertainty characterization to include phase bounding or
time domain uncertainty characterization to include restric-
tions on the allowable time variations.

The small gain test is actually based on conventional or
“fixed”” quadratic Lyapunov functions that guarantee stabil-
ity with respect to arbitrarily time-varying perturbations. Very
recently, however, robustness tests have been developed that
are based on quadratic Lyapunov functions that are a function
of the parametric uncertainty, that is, *‘parameter-dependent
Lyapunov functions.”’®’ In contrast to analysis based on a
fixed quadratic Lyapunov function, these tests guarantee ro-
bust stability by means of a family of Lyapunov functions and
do not apply to arbitrarily time-varying uncertainties. Hence,
when the actual uncertainty is real and constant, these tests are
less conservative than tests based on fixed quadratic Lyapunov
functions.$

In this paper we use a benchmark problem to compare the
Popov test,? based on a parameter-dependent Lyapunov func-
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tion,&” with the small gain? and positivity tests? that are based
on fixed quadratic Lyapunov functions.®’ Each of the stabil-
ity tests has graphical interpretations for the case of one-
block, scalar uncertainty.? However, here we will emphasize
the state-space tests that are based on Riccati equations and
allow the development of robust H, performance bounds in
addition to the determination of robust stability. We develop
continuation algorithms for the special case of one-block,
scalar uncertainty. The algorithm for Popov analysis addition-
ally requires that a certain product (CoB,) related to the uncer-
tainty characterization be equal to zero. As will be seen in Sec.
111, this condition holds for the parametric uncertainty under
consideration. The algorithms are applied to analyze a feed-
back system for the benchmark system in which the controller
was designed using the maximum entropy approach.®

The paper is organized as follows. Section II presents the
linear system to be analyzed for robust stability and perfor-
mance and gives the main theorems for the small gain, positiv-
ity, and Popov tests. Section 111 then considers the benchmark
problem and formulates the feedback system to be analyzed in
the format of Sec. I1. Section IV applies the graphical tests to
determine robust stability. Next, Sec. V develops continuation
algorithms for a special case of the state-space tests and ap-
plies the algorithms to the benchmark problem. Finally, Sec.
VI discusses the conclusions and directions for future work.

II. Riccati Equation Characterizations for the Small
Gain, Positivity, and Popov Theorems

We begin this section by establishing some basic notation
and definitions. Let ® denote the real numbers, and let (-) T
and (- )* denote transpose and complex conjugate transpose.
Furthermore, we write Il I, for the Euclidean norm, Il - I for
the Frobenius norm, o.qa( - ) for the maximum singular value,
tr(-) for the trace operator, and M = 0 (M >0) to denote the
fact that the hermitian matrix M is nonnegative (positive)

definite. The notation

oo- (212

(1)
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denotes that G(s) is a transfer function corresponding to the
state-space realization (4, B, C, D), i.e., G(s)=C(sI — A)~!
X B + D. The notation ‘™"’ is used to denote a minimal
realization. For asymptotically stable G(s), define the H, and
H,, norms, respectively, where w € [0, ®), as

A

1G(s)I3 2 —l—} 1G (w2 dw (2a)
7!'
1G ()l £ 0max(G(w)) (2b)

A transfer function G(s) is bounded real if 1) G(s) is
asymptotically stable and 2) IG(w)le, <1 for w € [0,).
Furthermore, G(s) is called strictly bounded real if 1) G(s) is
asymptotically stable and 2) 1G(fw)l,<1 for w € [0,). Fi-
nally, note that if G(s) is strictly bounded real, then
[ — D™D >0, where D & G(x).

A square transfer function G(s) is called positive real if 1)
all poles of G(s) are in the closed left half-plane and 2)
G(w) + G*(jw) is nonnegative definite for w € [0,0). A
square transfer function G(s) is called strictly positive real if
1) G(s) is asymptotically stable and 2) G(jw) + G*(jw) is
positive definite for w € [0,). Finally, a square transfer
function G(s) is strongly positive real if it is strictly positive
real and D + DT>0, where D & G(). (Note that in some of
the literature *‘strongly positive real’’ as defined here is re-
ferred to as ‘‘strictly positive real.”’)

At this point, we consider a linear uncertain system of the
form

X(t) = (A - ByFCo)x(t) + Dw(t), (ye® (3

z(1) = EX(0) @

Note that the system (3) and (4) may denote a linear feedback
system subject to an exogeneous disturbance signal w(t). The
individual elements of z(¢z) may denote the performance vari-
ables, possibly including the actuation signals. The product
— BoFC, then denotes the parametric uncertainty (i.e., A4).
In particular, By and C, are fixed matrices denoting the struc-
ture of the uncertainty and F is an uncertain matrix. Here, it
is assumed that for some nonnegative definite diagonal matrix
M, F e Fy;, or for some nonnegative scalar y, F' € F, where

Fy & |Fe ®m*m: Fis diagonal, 0 < F < M} )
& (Fe ®@m*m: Fis diagonal, F> <y~ ) 6)
if we additionally define

- & (Fe @mxmo; Fisdiagonal, —M<F=<0} (7)

then F ¢ F,; if and only if — F € Fy7, and if v 7! = opa(M),
Fe F, implies F € Fyy UFy .
Now denote G(s) by
A |B, ,
~ 8
G(s) [Co 0] ®)

Then evaluation of the robust stability of Eq. (3) is equivalent
to evaluation of the robust stability of the feedback system

shown in Fig. 1.
It now follows that for asymptotlcally stable A — BoFC, the

H, norm for Eqgs. (3) and (4) is given by

J(Fy=1tr OR = tr PV )

where
R =E"E (10)
V=DDT (11)

QO G(s)

+

Fig. 1 Feedback system to be analyzed for robust stability.

=(A - ByFC)TP + P(A - BoFC) + R (12)
=(A - ByFC)Q + Q(A — BFC)T + V (13)

If w(¢) is a standard white noise process with identity inten-
sity, then J(F) = lim,_,, S[¥7(t)R%(¢)]. Later we will present
robust performance bounds J such that J(F) < J for each Fin
the uncertainty set.

Next, we state the versions of the small gain, positivity, and
Popov theorems that give sufficient conditions for the stability
of the uncertain system (3) or, equivalently, the negative feed-
back interconnection of Fig. 1. Each of the theorems includes
both a frequency domain test and an equivalent state-space
test. In addition, robust A, performance bounds correspond-
ing to the state-space tests are presented.

Theorem 1 (Small Gain Theorem?). If (1/v)G(s) is strictly
bounded real, then the negative feedback interconnection of
G(s) and F is asymptotically stable for all F ¢ F,. Equiva-
lently, if for any symmetric, positive definite R there exists a
positive scalar « and nonnegative definite P satisfying

0=ATP + PA + v~ PBBIP + C]Co+ aR (14)

then the uncertain system (3) is asymptotically stable for all F
€ F,. In this case, for all F ¢ F,,

J(F) = J(e) = (1/a)tr(PV) 15)

Theorem 2 (Positivity Theorem’). 1f M ~' + G(s) is strongly
positive real, then the negative feedback interconnection of
G(s) and F is asymptotically stable for all F € Fy;. Equiva-
tently, if for any symmetric, positive definite R there exists a
positive scalar « and nonnegative definite P satisfying

0=ATP + PA + i(Cy — BJP)™M ~(Cy — BIP) + «R (16)

then the uncertain system (3) is asymptotically stable for all F
€ Fy. In this case, for all F € Fyj,

J(F) < J(a) = (1/a)tr(BY) $%))

Theorem 3 (Popov Theorem®7?).  If there exists a non-neg-
ative-definite diagonal matrix N such that M-'+
(I + N5)G(s) is strongly positive real, then the negative feed-
back interconnection of G(s) and F is asymptotically stable
for all F € Fy; . Equivalently, if for any symmetric, positive
definite R there exists a nonnegative-definite diagonal matrix
N, a positive scalar « and nonnegative-definite P satisfying

0=ATP + PA + (Cy + NCyA — BJP)T(M ~' + NCoBy)
+ WM+ NGB~ UCo + NCoA — BJP) +aR  (18)

then the uncertain system (3) is asymptotically stable for all F
€ Fy; . In this case, for all F € Fy;,

J(F) < J(a, N) = (1/a)tr((P + CJMNCy) V) 19)

Remark I. Theorem 2 may be considered a special case of
Theorem 3 with N = 0.

Remark 2. In each of the three theorems the requlrement
that R be positive definite can be relaxed. In particular, R is
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allowed to be nonnegative definite as long as the pair A, E)is
detectable where E satisfies ETE = R.

Remark 3. For the case of scalar uncertainty F (i.e.,
mgy = 1), the frequency domain tests given in the three theo-
rems have easy-to-implement graphical frequency domain in-
terpretations.?

Remark 4. As shown in Ref. 7, the Lyapunov function
that establishes robust stability of the negative feedback inter-
connection of G(s) and F in Theorems 1 and 2 is a fixed
Lyapunov function of the form V(%) = ¥7P£ where P satisfies
Egs. (14) and (16), respectively. On the other hand, the Lya-
punov function that establishes robust stability of the negative
feedback interconnection of G(s) and F in Theorem 3 is a
parameter-dependent Lyapunov function; that is, it is a func-
tion of the uncertain parameters and has the form
V(%) = xTP% + XTCJFNCy® where P satisfies Eq. (18).

Remark 5. Note that the Popov multiplier N can be a
negative-definite diagonal matrix that in the single-input/sin-
gle-output (SISO) case simply corresponds to a Popov line in
the Popov plane with a negative slope.” In this case, we note
that the candidate Lyapunov function has the form V(X) =
£7Px — £ TCJFNC,%, where N>0. Hence, it is necessary to
check a posteriori the positive definiteness of V(%) for all F €
F); to insure that V(¥) is a Lyapunov function.

Remark 6. An alternative statement of Theorem 3 that
directly captures uncertainty F € F,; UF,; can be obtained by
considering the multivariable shifted Popov theorem.? Specif-
ically,_this case corresponds to replacing M with 2M and A
with A — BoMC, in Theorem 3. In this case the frequency
domain interpretation for the case of scalar uncertainty in-
volves a family of frequency-dependent off-axis circles in the
Nyquist plane. The circle centers vary as a function of the
phase of the Popov multiplier, but each has the same real axis
intercepts at + M ~ !, For further details see Refs. 9-11.

III. Benchmark Two-Mass/Spring Example

Consider the two-mass/spring system shown in Fig. 2 with
uncertain stiffness k. A control force acts on body 1, and the
position of body 2 is measured, resulting in a noncollocated
control problem. Here, we consider controller 1 of Ref. 8,
which was designed for problem 1 of a benchmark problem!?
using the maximum entropy robust control design technique.
The controller transfer function given by

194390(s + 0.33679)[(s - 0.11735)? + 0.909962}
(s + 81.438)(s + 131.04)[(s + 2.9049)% + 1.8615%]

Ge(s) = (20

was designed so that the closed-loop system is robust with
respect to perturbations in the nominal value of the stiffness k
(i.e., k¥ = knom). The exact stiffness stability region over which
the system will remain stable was computed by a simple search
and is given by

0.4458 < k <2.0661 @an

Next, using a graphical approach and the state-space Riccati
equation approach, we apply small gain analysis, positivity
analysis, and Popov analysis to determine the stiffness stabil-
ity regions predicted by each of these tests. Each of these tests
is related to the previous test and is guaranteed to be less
conservative.

We begin by constructing the uncertainty feedback system
that will be used in each of the tests. The open-loop plant (for
m, = my = 1) is given by

x(t) = A(k)x(t) + Bu(t) + D,w(z) (22a)
v(t) = Cx(t) + Daw(?) (22b)

()= Ex(1) (22¢)

X Xp =2
1 > 2

U = m1 . mz w

Fig. 2 Benchmark two-mass/spring system for robust control design
and analysis.

where
(] 010 0
0 0 0 1 0
= , B =
Ak k k 0 0 1
k -k 0 0 0
(23)
D = C=E=[0100], D,=[01]

-0 O O
O O O O

The H, cost functional under consideration is defined with
respect to the transfer function between the disturbance w(t)
and the performance vector z(¢) + E,u(t), where E; =~/10- 3,
The perturbation in A (k) due to a change in the stiffness
element & from the nominal value k. is given by

A(k) = AKknom) 2 AA = — BoAKCy 24)
where 0
0

By = , Co=1[1 —100] 29

1
-1
In the subsequent analysis we will choose kyom = 0.6 since the
controller (20) was developed under this assumption.
Let the triple (4., B, C.) denote the state-space representa-
tion of the controller (20). Then, assuming negative feedback,
the closed-loop state matrix is given by

- Ak) - BC,
= 26
40 [ B.C Ae } @9
In addition, R and V are given by Egs. (10) and (11) where
- < D,
E=[E - EC.], D= B.D, 27)
Next, define
_ B ~
Bo=[ °], Co=1Co Oixd (28)
04 x |
and recall
< Al By
- = 29
G(s) [Co 0 ] (29)

Then, the plant uncertainty Ak can be represented by the
fictitious feedback loop shown in Fig. 1 with F = Ak. Notice
that with this stiffness uncertainty CoBo = 0, which holds for
any state-space realization of the system.

1V. Frequency Domain Graphical Analysis of the
Benchmark System
In this section we apply the frequency domain tests_de-
scribed in the three theorems of Sec. Il to determine Ak
(positive) and Ak (negative) such that stability is guaranteed

for —
Koom + Bk <k <Kkpom + Ak (30)
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Since the uncertainty is scalar, we will first use the graphical
techniques derived from the frequency domain tests. These
graphical tests originally appeared in Refs. 13 and 14 and are
included here for comparison with the results based on the
state-space formulations.

Small Gain Analysis

Small gain analysis requires considering the Nyquist dia-
gram of G (s). The smallest circle centered at the origin that
completely encompasses the Nyquist diagram, Im[G (jw)] vs
Re[G (jw)] for all w, (without touching it) is then drawn. The
intersection of this circle with the negative real axis is given by
~ 1/Ak, and the intersection with the positive real axis is
given by - 1/Ak. This analysis is shown in Fig. 3. It follows
that Ak = 0.1497 and Ak = ~ 0.1497. Hence, using small gain
analysis, stability is guaranteed for

0.4503 <k < 0.7497 @a3n

SMALL GAIN ANALYSIS
10 T v

~N
T

Imag Axis

Real Axis

Fig. 3 Frequency domain small gain analysis.

POSITIVE REAL ANALYSIS

+

-1/Ak

Imag Axis
)

2F -1/ak &
4 i
6F i
Ky .
.10 , ; R
-10 -5 0 5 10

Real Axis
Fig. 4 Frequency domain positivity analysis.

Note that since the Ak uncertainty block is composed of a
single scalar, this result is equivalent to the complex structured
singular value test.!’

Positivity Analysis

Positivity analysis determines stability bounds by drawing
straight-lines that lie to the left or right of the Nyquist diagram
(without touching it). For the Nyquist diagram of G(s), the
intersection of the line to the left of the Nyquist plot with the
negative real axis equals — 1/4k. The intersection of the line
to the right of the Nyquist plot with the positive real axis
equals — 1/Ak. This analysis is shown in Fig. 4. It follows
that Ak = 0.5278 and Ak = — 0.1523. Hence, using positivity
analysis, stability is guaranteed for

0.4477<k <1.1278 (32)

Popov Analysis

Popov analysis is a test that determines a stability bound
from a modified Nyquist diagram, namely, the Popov plot,
w Im[G(jw)] vs Re[G(jw)] for w=0. This analysis requires
finding lines (Popov lines) that intersect the negative or posi-
tive real axis at a point that is to the left of the Popov plot but
as close to the origin as possible. The slopes of these lines are
— 1/Nand - 1/N where N and N are the Popov multipliers.
The Popov test is equivalent to the positive real test if the lines
are chosen to be vertical. For the Popov diagram of G(s), the
intersection of the line to the left of the Popov plot with the
negative real axis equals — 1/Ak. The intersection of the line
to the right of the Popov plot with the positive real axis equals
- 1/Ak. This analysis is shown in Fig. 5. It follows that Ak
= 1.4661 and Ak = 0.1542, and the corresponding Popov
multipliers are, respectively, N* = 0.7999 and N* = — 0.2755.
Hence, using Popov analysis, one guarantees stability for

0.4458< k < 2.0661 (33)

Note that these bounds are identical to the exact bounds of
Eq. (21). Hence, for this example, Popov analysis yields to-
tally nonconservative robust stability results. This is not sur-
prising since, as mentioned in the Introduction, the Popov
result is based on a parameter-dependent Lyapunov function
that severely restricts the allowable time variation of the un-
certain parameters and hence closely approximates real pa-
rameter uncertainty within robustness analysis.

POPOV ANALYSIS

10

Imag Axis
(=]

-10 -5 0 5 10
Real Axis

Fig. 5 Frequency domain Popov analysis.
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V. State-Space Analysis of the Benchmark System

Continuation (or homotopy) algorithms'®!” are effective
techniques for solving systems of nonlinear algebraic equa-
tions and have found increasing engineering applications (see,
for example, Refs. 17-19). In this section, we develop contin-
uation algorithms that implement the state-space analysis re-
sults described in the three theorems of Sec. II. We restrict
ourselves to the case of scalar uncertainty (i.e., F is a scalar)
with CoBy = 0 (which applies to the benchmark system). In
addition, the exposition is focused on implementing state-
space Popov analysis since this case is the most complex. The
algorithms for small gain and positivity analyses are very
similar and hence are only briefly discussed. The results of
applying these algorithms to the benchmark problem are sub-
sequently presented.

Each of the algorithms is based on optimizing the cost upper
bounds J of Eqgs. (15), (17), and (19). At this point we focus
attention on the upper bound, Eq. (19), of the Popov theo-
rem, rewritten here for all F € F,; as

J(a, NY & (1/a)te((P + CTMNC)V) (34)
where, for CoBy = 0, P is given by

0=ATP + PA + (AW)Co+ NCA - BIPYM(C,
L ) (35)
+ NCobA - BJP) + aR .

The algorithm under consideration will be based on finding
scalars o and N that satisfy

- 1 - ~ S~
= ﬂ =tr(QR — =(PV + COTMNCO V) (36)
o o

aJ | R = = = 5T FTAT
0=—3 = “MCVC] + M(Co+ NCoA - BIPYQATC] (37)
a

where Q satisfies
0=(A4 - YuBM(Co+ NCA — B{P))Q

+ QA — NBM(Co+ NCA - BIPH + (1/a)V  (38)

Continuation Map for Popov Analysis

To define the continuation map we assume that the uncer-
tainty parameter M is a function of the continuation parame-
ter A € {0, 1]. In particular, it is assumed that

M(\) = My + XM — My) (39)

Note that, at A=0, M(N)=M,, whereas at A=1, M(A)=M;.
The continuation map is defined as the gradient of the upper
bound on the cost for the uncertainty parameter M(\). In
particular,

NE:ICRS
HEN=| i, w} “9
where
[
A
0%y (a1

H\(8, N) 2t (Q(6, MR - —(1)\), (P®, NV +CIMMNNGV))
(V)2
(42)

Hy6, N 2 —1——/\40\)6o vey
a(N)

+ MONGo+ NONGoA - BIP®, \)Q6, NATET (43

RICCATI EQUATION APPROACHES

and
0=ATP(@®, N)+P6, NA
+Y5(Co+ NONCoA — BIP(6, N)TM(N)

(Co+ NONCoA — BIP(8, M)+ (MR (44)

0=[4 = % BMMN(Co+ NNCoA — BJP (B, MIQ O, N

+0Q(6, M4 - %BMO(Co+ NOWCoA

-BJP(@, >\))]T+;(1)\—)‘7 (45)

The continuation curve is defined by

0=H(@, N, Ae[0,1] (46)

Jacobian of the Continuation Map for Popov Analysis

The algorithm requires computation of VH(8, N7, the
Jacobian of H(6, N\). Note that

VH@, NT=[Hy Hy} @7
where
oH
A 48
Hy 2 (48a)
aH
A 48b
H, N (48b)

Expressions for Hy and H, are given in the Appendix.

Outline of the Continuation Algorithm for Popov Analysis

Step 1. Initialize loop =0, A=0, AN € [0, 1], 67=[1 0]
(i.e., =1, N=0).

Step 2. Let loop =loop + 1. If loop =1, then go to step 4.
Otherwise, continue.

Step 3. Advance the homotopy parameter and predict the
corresponding parameter vector 8 as follows.

3a. Let Ag=A.

3b. Let A=Xg+ AN

3c. Compute Hg(f, A) and Hy(6, N). Then compute 6, (Ao)
using

8, (o) = — [Hy(8, N)]~'H\(6, No) 49)

3d. Predict 8(\) using 8(N) = 6(Ao) + AN, (No).

3e. If IH(6, M) satisfies some preassigned prediction tol-
erance, then continue. Otherwise, reduce AX and go to step 3b.

Step 4. Correct the current approximation 6(A) as follows.

4a. Compute H(8, N) and Hy(M\).

4b. Correct 8(N) using 8(\)—0(\) — [H(8, N ~'H (6, N).

4c. If HH(8, M satisfies some preassigned tolerance, then
continue. Otherwise, go to step 4a.

4d. If P()\) is not nonnegative definite, then go to step §,
since stability is only guaranteed for M = M(\o). Otherwise,
continue. )

4e. Compute the upper bound J(6).

4f. If A =1, then continue. Otherwise, go to step 2.

Step 5. Stop.

Continuation Algorithm for Positivity Analysis

Recall that positivity analysis is a special case of Popov
analysis (with N £ 0). Hence, positivity analysis is imple-
mented using the algorithm for Popov analysis with N con-
strained to zero.
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Continuation Algorithm for Small Gain Analysis

For small gain analysis we consider the upper bound J («) of
Eq. (15), rewritten here as

J(e) & (1/atr(PV) (50
where
0=ATP + PA + M -PBBJP + CJCo + aR (51)

The algorithm is based on finding a scalar « such that
o—ﬂ—cr(QR' IPV 52
e o? (52)
where Q satisfies

=(A + M ~2B,B/P)Q + Q(A + M ~BB{P)" + (1/a)V
(53)

It is assumed that M()\) is as given by Eq. (39) and the
continuation map is defined as

~ 1 _
H(8, \) = tr<Q(0, NR — —P(@0, N\) V> (54)
o
where
R (55)
" Cost Bounds for Various Robustess Tests
23
20
3 : i
3 s soall gain, .| pasidive el !
1 :
10 : H H
-
: : ‘scrual

o : ; -
0.2 ] 02 04 0.6 08 1 12 1.4 1.6

allowed stiffness perturbation
Fig. 6 Performance bounds for the small gain, positivity, and Popov
tests.

P opdmum cost scaling for various robustness tests
L. T T T

cost scaling alpha

Fig. 7 Optimal a for the small gain, positivity, and Popov tests.
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Fig. 8 Optimal NV for the Popov test.

0=ATP@, \) + P9, VA
+ M(N) 2P, NB.BIP@, N\ + CJCo + aR (56)
= (A + M\ "2B,BIP8, N)QE, N
+ 00, N + M(N)~2BoBEPB, MY + (I/)V  (57)
The continuation curve is defined by

0=H@, N), A€o, 1] (58)
Expressions for the Hessian Hy and H, are given in the Ap-
pendix.

The outline of the continuation algorithm for small gain
analysis is identical to that given for Popov analysis. Because
of this, no further discussion is needed.

Analysis of the Benchmark Problem

When the continuation algorithms for small gain, positivity,
and Popov analysis are applied to the benchmark problem, the
performance curves shown in Fig. 6 result. As expected,
Popov analysis yields less conservative results than the positiv-
ity and small gain tests. The robust stability bounds Ak (posi-
tive) and Ak (negative) obtained from the state-space tests are
identical to those obtained from the frequency domain tests of
Sec. I1V. The optimal « for each test is shown in Fig. 7 as a
function of M. The optimal N for the Popov test is shown in
Fig. 8. Note that as M approaches its supremum and infimum,
N converges, respectively, to N* and N* obtained from the
graphical test.

YI. Conclusions

This paper has discussed the small gain, positivity, and
Popov tests and applied both the (graphical) frequency do-
main version of each test and the corresponding state-space
test to a benchmark problem. The frequency domain tests and
the state-space tests were seen to give identical results for
robust stability, and the Popov test was completely nonconser-
vative in its robustness predictions. The state-space tests also
yielded robust H, performance bounds and were implemented
using continuation algorithms. The algorithms developed here
only apply to the special case of scalar uncertainty and the
algorithm for the Popov test further requires that a certain
product (related to the uncertainty pattern) is zero. Future
work will involve the development of more general numerical
algorithms.

Appendix: Jacobian Expressions for the
Popov and Small Gain Tests
In this Appendix we show how to compute the Jacobian of
the homotopy map H(@, \) for both the Popov and small gain
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tests. We first recall that the Jacobian VH(6, \) is defined by

VHO, NT£[H,, H\ (A1)
where
a OH AOH
Hy# 36" Mo (A2)

Since H(8, N\) corresponds to the upper bounds of the cost
corresponding to M(\), Hy is the corresponding Hessian.

Jacobian Expressions for Popov Analysis

d 3
a—&Hn(e, A) 5‘;,1'11(0, A)
Hy= (A3)

a .
SYM é—b?HZ(B' N)

where

3 0. 1 0P .

—H,=tr < QR———V+—(PV+COTMNC0V) (A4)

da da o? da

9 ,=< MBIL 0 4 M(Cy+ NGy - BTP)—Q

N °a 0

+MCAQ)A Tc'{) (AS5)
3 Q- 10P. 1 _
—H, = —=R = — —CT
Snh= r<aNR = aNV 2COMCOV> (A6)

and dP/da, 3P/3N, 3Q/3a, and dQ /AN satisfy
r a
0=A -—-—+6—A,+R (A7)

F0P 9P .
+— A, + %[(Co + NCoA - BJPYTMCoA

0=A—
“ON " 9N

+ ATCIM(C o+ NC,A ~ BIP)] (A8)
L
+ <2BOMBO aa>Q

+ Q(-BOMB TaP) - 0%17 (A9)

- 00 90 -,
=A—+ A
da * da

3 T
0=A, __Q + a[\/‘i < ~BMBJ— )Q + Q<-B°MBO aP>

| (P | A
- (EBOMCOA>Q - Q(EBOMCOA> (A10)
where
A, 8 4 - uBM(Co+ NCyA - B P) (A11)
Similarly, H, is given by
B_XHl(g A)
H, = (A12)
EXHZ(G, )\)—

RICCATI EQUATION APPROACHES

where
a 00 - aP ~ -
EXH tr<a)\ <a)\V + CI(M; — M)NG, V>> (A13)
4 A AT
5}12 = —(Mf - My)CoVCy

5 + NCA - B =7 OP
+ [(Mf - M)(Co+ NCoA - BJP)Q — MBOT_B_)\Q

+ M(Cy+ NCA ~ EJP)%%]/I o'} (A14)
and 3P/ and 3Q /X satisfy
_.OP AP .
0=A—+—A,
AT o
+ Y(Cy+ NCoA — BIPYM; — Mo)(Co + NCoA — BIP)
(A15)
- aQ a0 -
0= aT
A= a)\A
i 1s ?L’)
+ <2B"MB° a>\>Q * Q(zB"MB" P
1. . .-
- [EBO(MJ‘ — M)(Co + NCoA — BoTP)] Q
1.
- Ql:'z'Bo(Mf M)(Co + NCoA — B{P )] (A16)
Jacobian Expressions for Small Gain Analysis
The Hessian Hy( £ 3H/36) is given by
30. 18P_ 2 _
= —— -V +=PV Al7
Ho tl’<a R a2 E 3 ) ( )
where dP/da and 4Q /8« satisfy
=ATE+3—PA R (A18)
da Oda
- o 30 - _
0=(4 +M‘ZBOBOTP)§2+—Q(A +M ~2B,BIP)T
da da
- 3P 70 LA
+M-ZBOB,,T£Q+ ~25,8] -——Q ———V_ (A19)
Similarly, Hy(23H/8)\) is given by
aQ . 18P,
= -V A20
= "(ax o on ) (A20)
where dP/3\ and 4Q/0\ satisfy
- ___ 3P P . _
0=(A4 + M ~2BBIP) —+—(A + M-BoB[P)
: EYSHEN
—2M ~3(M; — Mp)PB,BJ P (A21)
5577229 7 4 M-25.57P)
0=(A+M- BOBOP)——+ (A +M ~*ByB,y P)
_ 3P _ 9P _\T
-2 T~ —2B T
+M ~2BBy 6)\Q+<M oBo 6)\Q>
—2M =M, — MX(BoB{PQ + QPB.B{) (A22)
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Abstract

An important part of feedback control involves analyzing uncertain systems for robust
stability and performance. Many robustness theories consider only stability issues and
ignore performance. Most of the performance robustness results that do exist will not
always yield finite performance bounds for the case of closed-loop systems consisting of
uncertain positive real plants controlled by strictly positive real compensators. These
results are obviously conservative since this class of systems is unconditionally stable.
This paper uses majorant analysis to develop tests that yield finite performance bounds
for the above case. The results are specialized to the case of static, decentralized colocated
rate feedback and dynamic colocated rate feedback.
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1. Introduction

A central issue in feedback control is the analysis of uncertain systems for robust stabil-
ity and performance. Hence, considerable effort has been devoted by researchers in control
to the development of effective robustness analysis tools. Many of the developments in
robustness analysis have focused exclusively on the determination of stability. However, in
practical engineering, performance issues are paramount, so that it is important to addi-
tionally determine the type of performance degradation that occurs due to the uncertainty
in the system modeling. References [1-13] are examples of robustness analysis techniques
that do consider performance. A common feature of a class of these results [5-8] is that

they rely on majorant bounding techniques [14-16].

Majorant theory was originally developed by Dahlquist to produce bounds for the
solutions of systems of differential equations [16]. The corresponding bounding techniques
focus on providing upper bounds on subblocks of matrices and inverse matrices. Similar
bounding procedures have been used in the work of researchers in large scale systems
analysis [17,18]. The more recent results of [5-8] apply majorant techniques to produce

robust performance bounds for uncertain linear systems.

In [5-8] performance is measured in basically three ways. References [5] and [6] measure
performance in terms of second order statistics. In particular, bounds are obtained on the
steady state variances of selected system variables. In [7], performance is expressed in
terms of the frequency response of selected system outputs. This result led to a new upper
bound for the structured singular value. Finally, [8] considers the transient response of
certain system outputs, a performance measure which had not previously been treated in
the robustness literature. A common feature of these results and most other robustness
results, with the possible exception of methods based on extensions of Popov analysis and
parameter-dependent Lyapunov functions [11-13], is that they do not predict unconditional
stability for feedback systems consisting of a positive real plant controlled by a strictly

positive real controller.

This paper uses the logarithmic norm in context of majorant analysis to develop tests




for robust stability and performance that predict unconditional stability for the above
case and also yield robust performance bounds. As in [1,2,7,10] this paper considers the
frequency domain behavior of a given system. The results are specialized to the case of
static, decentralized colocated rate feedback and dynamic, colocated rate feedback. The
bounds developed here are illustrated with examples chosen from this class of problems
and compared with the performance bound obtained in [7] and the performance bound
resulting from complex structured singular value analysis [1,2]. It is seen that the new

bounds are much less conservative than the alternative bounds.

The paper is organized as follows. Section 2 presents notation and the necessary math-
ematical foundation. Section 3 gives results relating to strictly positive real feedback of a
positive real system. Section 4 develops robust performance bounds for the aforementioned
systems. Section 5 specializes the performance bounds to the case of static, decentralized
colocated rate feedback. In Section 6 we extend the results of Section 5 to dynamic, cen-
tralized output feedback and present a systematic approach for designing strictly positive
real compensators. In order to draw comparisions to the robust performance bounds de-
veloped in Section 5 and 6, Section 7 presents a brief summary of the results developed in
[7] and [1,2] involving an alternative majorant bound and the complex structured singular
value bound respectively. Section 8 presents several illustrative examples that demonstrate

the effectiveness of the proposed approach. Finally, Section 9 presents conclusions.

2. Notation and Mathematical Preliminaries

In the following notation, the matrices and vectors are in general assumed to be com-

plex.

R set of real numbers

C set of complex numbers

I, p X p identity matrix

zZ* complex conjugate of matrix Z

zZH complex conjugate transpose of matrix Z (= (Z2*)T)
zij or Zij (3,7) element of matrix Z

diag{z1,...,2n} diagonal matrix with listed diagonal elements

Y <L Z yij < zij for each i and j, where Y and Z

are real matrices with identical dimensions




- R |

|} absolute value of complex scalar

det(Z) determinant of square matrix Z

lz]l2 Euclidean norm of vector z (= VzHz)

Omin(Z), Omax(Z) minimum, maximum singular values of matrix Z
1Z]|s spectral norm of matrix Z (= omax(Z)),

subordinate to the Euclidean norm

NZ|lr Frobenius norm of matrix Z ( = /E Z zijzl;)
i J

p(2) spectral radius of a square matrix Z

L[Z(1)] Laplace transform of Z(t)

Amin(@)s Amax(Q) minimum, maximum eigenvalues of the Hermitian matrix Q
max{Yy,..., Y} =Y where ¥;; = max{y1,ij, ¥Y2,ij, - - - yYn,ij}

Let A € €™*". Then, the modulus matriz of A is the m xn honnegative matrix
[Alv = [laij]]- (2.1)
The modulus matrix is a special case of a block norm matriz [14,15].
Let B € C™*?, Subséquent analysis will use the following relation

|ABlm << [Alm|Blm. (2.2)

A majorant [16] is an element-by-element upper bound for a modulus matrix (or more
generally, a block norm matrix). Specifically, A is an m x n majorant respectively of

AeCmxmif .
|Aln << A. (2.3)

Let Z € C™*". Then Z € IR™*" is an n X n minorant [16] of Z if
Zi < il (2.4a)
%; < —lajl, 1#75. ' (2.4b)
Lemma 2.1. Let Z4 and Zoq denote respectively the diagonal and off-diagonal com-
ponents of Z € C™*", such that '
Z4q = diag{zii}iz1y Zod = Z — Za. (2.5)
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Then, if Z4 is an n X n minorant of Zg and Zoq is a majorant of Zoq, Zda — Zod is a minorant

of Z.

The logarithmic norm [16,19) of Z € C**™ with respect to the spectral norm is defined

by
I+ hZ]s -1

_e .
()8 Jim, )
or, equivalently [19],
7(2) = %,\mx(z + ZH). . (2D

A matrix P € IR®*™ is an M-matrig [20-22] if it has nonpositive off-diagonal elements
(i.e., pij < 0 for i # j) and positive principal minors. It has been shown [20-22] that the

inverse of an M-matrix is a nonnegative matrix.

The next five lemmas, especially Lemmas 2.4 and 2.6, are key to the development of
the robust performance bounds of the following sections. The proofs of these lemmas are

based on the relationship between minorants, logarithmic norms, and M-matrices.

Lemma 2.2. Let Z € C"*", Then Z € IR"*" is a n X n minorant of Z if

1
i < §(Za‘i + zj;), (2.8)
or
.1 . |
Zi < 511(21':' -zl (2.9)
and
5 < —laijly i (2.10)

Proof. It follows from equation (3.1) of [16] that Z is an n x n minorant of Z if
%i; < —7(~z2ii), (2.11)

and (2.10) is satisfied. Substituting (2.7) into (2.11) yields (2.8). Hence Z satisfying (2.8)

and (2.10) is a n X n minorant of Z.




Next recognizing that a minorant of ZH is also a minorant of +;Z, it follows by

replacing Z by £7Z* in (2.8) and (2.10) that (2.9) and (2.10) define a n X n minorant of

Z. 0O

Lemma 2.3.[16]. Assume Z € C"*" and let Z be an n x n minorant of Z. If in

addition Z is an M-matrix, then

127y << 270 (2.12)
The next lemma is an immediate consequence of Lemmas 2.2 and 2.3.
Lemma 2.4. Assume Z € C"*" and Z € IR**" satisfies
1 1
5., < (z:: x - PR
Zi < max{ 2_(2,, + z7), 2]](2,, z,,)l}, (2.13q)
Zij < —lzijl, 1#7 (2.13b)
Then, Z is a n x n minorant of Z. Furthermore, if Z is an M-matrix, then
1Z7m << 270 (2.14)
Lemma 2.5. let Q € €™*" and let g be a positive scalar satisfying either
1
q < §Am1n[Q + QH], (215)
or
1
g< ‘é'/\min [:t](Q - QH)] (2.16)
Then,
NQl < . (2.17)
Proof. It follows from Proposition 1 and equation (3.1) of [16] that any positive scalar
satisfying

g<-7(-Q)

(2.18)

also satisfies (2.17). Substituting (2.7) into (2.18) yields (2.15). Since ||£7Q~||s = |Q |5,

Q in (2.15) can be replaced by £37Q which yields (2.16). O
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An immediate extension to Lemma 2.5 is as follows.

Lemma 2.6. Let Q € C**" and let g be a positive scalar satisfying

Aminl@ + Q7] Shmin (@ - @), S QT - Q)]}. - (219)

N =

g_Sma.x{

Then, _
1R~ s < g% (2.19)

Lemma 2.7.[23]. Let 4, B € C**". Then,

amin(A + B) Z Umin(A) - Umax(B)- (220)

The next lemma is a direct consequence of Theorem 4.3.1 of [23].

Lemma 2.8. Let A, B € C"X” be Hermetian and let Amin(4), Amin(B), and Amin (A +

B) denote the minimum eigenvalues of the respective arguments. Then,

/\min(A + B) > /\min(A) + /\min(B)- (2.21)

Finally, we establish certain definitions and a key lemma used later in the paper.
Specifically, a real-rational matriz fucntion is a matrix whose elements are rational func-
tions with real coefficients. Furthermore, a transfer function is a real-rational matrix each
of whose elements is proper, i.e., finite at s = oco. A strictly proper transfer function is
a transfer function that is zero at infinity. An asymptotically stable transfer function is
a transfer function each of whose pbles is in the open left half plane. Finally, a stable
transfer function is a transfer function each of whose poles is in the closed-left half plane

with semi-simple poles on the jw axis. Let

- [42]

denote a state space realization of a transfer function G(s), that is, G(s) = C(sI—A) ' B+

D. The notation “ ™™” is used to denote a minimal realization. The H; norm of an

~

assymptotically stable transfer function G(s) is defined as

(e o]

6l 2 (- [ IGGlEdw)*. (2:22)

—00
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A square transfer function G(s) is called positive real [24] if 1) G(s) is stable, and 2)
G(s) + GH (s) is nonnegative definite for all Re[s] > 0. A square transfer function G(s) is
called strictly positive real [25-27] if 1) G(s) is asymptotically stable, and 2) G( Jw)+GH(jw)
is positive definite for all real w. Recall that a minimal realization of a positive real transfer

function is stable in the sense of Lyapunov, while a minimal realization of a strictly positive

real transfer function is asymptotically stable.

Next we state the well known positive real lemma [28] used to characterize positive

realness in the state-space setting.

A |
c | o0
itive real if and only if there exist matrices Qo and L with Qo positive definite such that

Lemma 2.9. The strictly proper transfer function G(s) ™i* is pos-

" AQo + QoAT = —-LLT, (2.23)
Q.CT = B. (2.24)
This form of the positive real lemma is the dual of that given in [28], and the derivation

is similarly dual. See [29] for further details on the dual positive real lemma.

A linear time-invariant system with input w, output y, and transfer function represen-
tation
y(s) = G(s)w(s) (2.25)
is stable if G(s) is rational, stable, and proper. This definition of system stability is
equivalent to bounded-input, bounded-output stability.

3. Positive Real Plants with Strictly Positive Real Feedback

We begin by considering the following n**-order, uncertain, second-order matrix linear

plant with proportional damping and rate measurements:

7i(t) + 2A95(t) + Q*n(t) = Bu(t) + Duw(t), . (3.1a)
y(t) = Cn(t), (3.1b)
2(t) = Bi(t), (3:1¢)




where
Q= diag{Q,-}?;l, Q;>0for: € {1,2,...,n}, (3.2)
A=diag{¢;i}i=;, ¢ >0forie {1,2,...,n}, (3.3)
u € IR™ is the control vector, w € IR™ is the disturbance variable or reference signal,

y € IR™ represents the rate measurements, and z € IR"* represents the performance

variables (restricted to be linear functions of the modal rates). It is assumed that

QeN 2 {0+ AQ: |AQM << AQY, (3.4)
A€ A2 {Ao+AA:|AAM << AR}, (3.5)
BeB2{By+AB:|AB|y << AB}, ©(3.6)
DeD2{D, +AD:|AD|y << AD}, (3.7)
CeC2{Co+AC:|AC|y << AC), (3.8)
EcEZ2 {E)+AE:|AE|y << AE}. (3.9)
Next, define

H, £ (Q,A), (3.10)

H, £ (B,0C), (3.11)

H, £ (D,E), (3.12)

and define H;, Hj, and H3 to be the corresponding uncertainty sets, i.e.,

H; £ {(2,A):Q€Q, Ac A}, (3.13)
H, = {(B,C): BeB, CeC}, | (3.14)
H; 2 {(D,E): De D, EcE}. (3.15)
Additionally, define
H = H; UH; UH;. (3.16)

Note that H; is the uncertainty set corresponding to errors in the frequencies and damping
ratios while H; and Hj are uncertainty sets corresponding to errors in the mode shapes.

It follows from (3.4)—(3.9) that H;, H,, and H; are arcwise connnected.

8




Furthermore, define

6(s) = L),

so that (3.1) has the s-domain representation

&~1(H,,s)8(H,s) = Bu(s) + Dw(s),
y(H,s) = Co(s),
z(H,s) = E§(s),

where
@(Hy,s) 2 diag{¢i(H1,5)} 1,

and
s

82 4 2¢:i2is + Q? '
Note that for all H; € H;, $(H,, s) is strictly positive real, so that

¢i(H1,3) é

&(Hy,jw) + &7 (Hy,jw) >0, Hy €eH;, we(0,00).

(3.17)

© (3.18a)

(3.18b)
(3.18¢)

(3.19)

(3.20)

(3.21)

If, alternatively, the system is undamped, that is, (; = 0, ¢ = 1,...,n, then (3.19) is

positive real.

To make the model more realistic we now include sensor and actuator dynamics that

are assumed to be known. (These dynamics could be empirically determined via hard-

ware experimentation.) The matrix of actuator dynamics (¥,) and the matrix of sensor

dynamics (¥,) are given respectively by

Ta(s) = diag{¥s,i(s)}i2,
U,(s) £ diag{¥,,i(s)}i2, .

Appending these dynamics to the system (3.13) yields

®~1(Hy,8)8(H,s) = B¥,(s)u(s) + Dw(s),
y(H,s) = T,(s)CO(s),
2(H,s) = Ef(s).

9

(3.22)
(3.23)

(3.24a)
(3.24b)
(8.24¢)




Next, assume that the linear feedback law
u(s) = —K(s)y(s) (3.25)

stabilizes the nominal system, i.e., the system (3.24) with H, = (§0,Ao) and H; =
(Bo,Co). Substituting (3.25) into (3.24a) gives -

(67" (Hy,s) + F(Haz, 5))0(H, 5) = Duw(s), (3.26)

where

F(H,,s) 2 BU,(s)K(s)¥,(s)C. (3.27)
Now define Guws(H, s) to be the transfer function between w(s) and (H, s), such that
6(H,s) = Gue(H, s)w(s). (3.28)
Then, the following proposition is needed for Theorem 3.1.
Proposition 3.1. For given H € H, G¢(H, s) is asymptotically stable if
det[® (Hy,jw) + F(Hz, jw)] #0, w € [0,00). (3.29)

Proof. The result is a direct consequence of the multivariable Nyquist criterion. [J

The proof of the following theorem relies on Proposition 3.1. For the statement of the

next result let Q : H — IR"*", and define v(Q) by
(Q) £ max{ mip D hmin (QU) + (), mi, 3o (2(QUE) - Q)

min 2hain (@7 () - Q) }..
| (3.30)

Theorem 3.1. If for all H; € Ho, F(H>, s) is positive real, then Gy¢(H, s) is asymp-
totically stable for all H € H (that is Gye(H, s) is robustly stable). In addition,

“ (@~ (Hy,jw) + F(Hz, )] “s < p7H(w), (3.31)
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where p(jw) is any positive scalar satisfying

p(w) S v[@71(gw) + F(jw)). (3.32)

Proof. First note that ®(H,,s) is strictly positive real for all H; € H;. We now show
that ®(H;, jw) is invertible and ~(H,, s) is strictly positive real.

Let HL € Hy, z € €%, z # 0, and A € C be such that ®(H;,jw)z = Az and hence
tH®(H, jw) = AHzH, Then, zH[®(H1, ) + ®H(H,,jw)]z > 0 implies Re A > 0. Hence
det[®(H1,w)] # 0. In addition,

q)_l(Hl ,]w) + Q—H(Hlij) = @_I(Hl,]w) [@(Hla]w) + Q)H(_H'l,]w)] Q—H(Hla]w) > Oa

which implies that ®~1(Hj,s) is strictly positive real. Since, for all H, € Hj, F(Ha,s)
is positive real it follows that for all H; € Hy and H, € Ha, [®7!(Hy,s) + F(H,,s)] is
strictly positive real and thus (3.29) is satisfied. Hence, it follows from Proposition 3.1
that Gue(s) is asymptotically stable for all H € H.

Now, for H, € H; and H, € H,, ®"1(Hi,s) + F(Ha,s) is strictly positive real and
hence v[®~1(jw) + F(jw))] is positive. Equation (3.31) then follows using Lemma 2.6. [0

Remark 3.1. The first part of the proof to Theorem 3.1 is essentially identical to the
proof of Lemma 3.2 of [30].

Remark 3.2. The norm bound (3.31) lays the foundation for one of the performance

bounds given in the next section.

Remark 3.3. Note that Theorem 3.1 also holds if, alternatively, the plant is positive

real and the compensator is strictly positive real.

Remark 3.4. Note that in the scalar case the definition of ¥(Q) can be specialized to

a 1 x .1 .
/(@) 2 max{ min 3(Q(D) +Q*(B), mip L@ - @)} (39)
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4. Performance Bounds

In this section it is again assumed that F\(Hz,s) is positive real for all H, € Hz. We

define
T(Hy, Ha,s) 2 [0 (Hy,s) + F(Ha,s)] ", (4.1)

and note that in this case (3.26) yields
6(H,s) = I'(Hy, H, s)Dw(s). (4.2)
Let f‘(]w) denote a majorant of I'(H,, Hz, jw) for all H; € Hy and H; € Hy, such that

max | T'(Hy, Hy,w) M<< D(w). (4.3)
HeH,
H.eH,

Then, applying the inequality (2.2) to (4.2) gives
max | 8(H, jw) M<< TGw)D | w(iw)|m. (4.4)
HeH
Similarly, applying the inequality (2.2) to (3.24c) and using (4.4) gives
|2(w) IM<< |EIME(w), (4.5)

where
f(w) & T(w)Dhw(yw)u. (4.6)

Equations (4.5) and (4.6) indicate that performance bounding requires the compu-
tation of I'(jw) satisfying (4.3). The following two theorems present alternatives for the

choice of I'( jw). The first theorem follows directly from Theorem 3.1.

Theorem 4.1. Assume that for all H, € Hy, F(H3,s) is positive real and p(yw) is a
positive scalar satisfying (3.32). Then

max I F(HI,H%]L") IMSS f‘O(]w), (47)
mcH,
where
To(w) = p™! (jw)Us, (4.8)
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and U, denotes the n X n matrix with all unity elements.

Let ID™ denote the set of nxn diagonal matrices, let (-) have the mapping @ : H — ID",

and define the function vp(Q) by
vp(Q) £ diag{v(gii)},_,-

We are now prepared to state the next theorem.

(4.9)

Theorem 4.2. Assume that for all H, € Ha, F(Hz,s) is positive real and let

Fy(Hs,s), and Foa(Hz,s) respectively denote the diagonal and off-diagonal matrices cor-

responding to F(Ha,s), such that

Fd(H2’s) 2 dia'g{fil'(H%s)}?:la
Foa(H,,s) = F(H;,s) — Fa(Ha,s).

Let II(jw) be given by
N(w) = P(w) = Foa(w),

where P(jw) is diagonal and satisfies
P(jw) << vp(@7 (H1, ) + Fa(Hz, w)),

and Fyq(jw) satisfies
[Foa(w)lij 2 max |[Foa(Hz,w)kij]-
4 H.eH,

Then,
max | T(ow) IM<< T (gw).

HieXl,
HzGHQ

Proof. First note that I'(Hy, Ha, s) is given by

T(Hy,Hz,s) = [Sa(Hi1, Ha,s) + Foa(Hz,s)]

where

Sd(Hl,Hz,S) 9—'—' Q_I(Hl’s) +Fd(H2,S).
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(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Let S'd(]w) be a minorant of Sq(H,, Ha, jw), and let ﬁ’od(_yw) satisfy (4.14) for all H € H.

Furthermore, if S$q(jw) — F,a(yw) is an M-matrix it follows from Lemma 2.3 that
IPGw)lm << [Sa(iw) = Foa(w)] ™ - (418)
Since vp(Sa(jw)) is a minorant of Sa(Hy,Hs,jw), so is P(jw) and hence the proof is

complete. [

Remark 4.1. Note that for the case n = 1 Theorems 4.1 and 4.2 yield the same
bound. However, in the case n > 1 the performance bound is obtained by computing the

minimum of the bounds given by Theorems 4.1 and 4.2.

5. Performance Bounds for Colocated Rate Feedback

In this section we give performance bounds for decentralized colocated rate feedback

systems. Specifically we assume that

C = BT, (5.1)
Wo(s) = Uy(s) = I, (5.2)
K(s) = &&T, (5.3)

where
k = diag{r;}T,. (5.4)

Hence,
F(H,,s) = BkeTBT, (5.5)

We now show how to practically compute bounds corresponding to Theorems 4.1 and 4.2.

First, however, define § : IR — IR as

, >0 '
NOE {g 0. (5.6)

We begin by showing how to compute a positive scalar p(jw) satisfying (3.32) with
v(-) given by (3.30). Using Lemma 2.8 it follows that
Amin [(D_I(Hla]w) + F(HZ,J“‘J) + é—H(Hl’]w) + FH(H%JW)]

(5.7)
> Amin (@71 (Hy, jw) + @ H(Hy, jw)) + Amin[F(Hz, jw) + FE(Hz, w)).
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Now,

&1 (Hy,w) + @7 (Hy, gw) = diag{4CQ} iz

(5.8)
= diag{4(Co,x + Ao,k )(R0,k + ASo,k)}-
Hence,
min S Amin[@1(Hy, ) + & H(Hy, )] = min2(Cox — AC)( Qo — Ak).  (5.9)
H,eH, 2 k .
Furthermore,
F(Hy,jw) + FH(H;, jw) = 2Brx* B™. (5.10)
Note that
Amin(2BxxTBT) = 202, (Bk) = 202%;, (Bo + AB)k). ©(5.11)

Now, using (2.20) it follows that
Omin (Bo + AB)K) 2 0min(Bok) — 0max(ABk)
2 Omin(Bok) — (max £i)omax(AB) (5.12)

2 omin(Bor) — (max i) |ABllr.
Since omin ((Bo + AB)k) > 0, (5.11), (5.12), and (5.6) yield

. 1 — 2
min  —Amin [F(Hg,]w) + FH(Hg,]w)] > [S(G’min(BofC) — (max fc;)”AB"F)] . (5.13)
HzGHz 2 ) b

It now follows from (5.6), (5.8), and (5.12) that

.1 - -
}f{rgﬁ§/\min[§) Y(Hy,jw)+ F(Ha,jw) + @ H(Hl,]w)+FH(H2,]w)]

> min 2(Go,k — ALx)( Qo — A) - (5.19)
+ [8 (omin(Bor) ~ (maxxi)|BB]ls)] -
Once again using Lemma 2.8, it follows that
Amin [72 71 (H1, w) — 78~ (Hy, 3w) + 3F (Ha, g0) = JFH ((Hy, gw)] (©.15)
> Amin 18~ (H1, w) — 38~ H (H1, 0)] + Amin [JF(Haz, jw) ~ JFH (Hz, jw)). .

Now, noting

7 (Hy, o) — 9@ H(Hy, ) = 2liog{ 29 — 0}y (5.16)
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we obtain

. 1 -1 —-H : 1 O, \2

=Amin Hy,w) — 3@~ % (H,, = —(Q — AQ)* — w. 5.17
Hﬁrgﬁl?/\m’ [1@71(H1,gw) — 3877 (Hy, )] min ~ (£ k) —w (5.17)

Furthermore, 4
IF(Hz,jw) — 3FH(Hy, jw) = 0, (5.18)

yields

min 1/\min []F(Hg,]&)) _]FH(HZs]w)] = 0. . (519)

H,eH, 2

It now follows from (5.15), (5.17), and (5.19) that

1 -
miﬁ 2 Amin [197 (H1,3w) — 13 (Hy, jw) + 3F(Hz, jw) — 3FH (Hz, jw)]

He . (5.20)
> min —(Q — AQ)? —w.
k- w
Similarly,
1 - -
min = Amin (19077 (Hy, ) = 771 (Hy, ) + 3F 7 (Hy, jw) = gF(Ha, )]
HeH (5.21)

" 2 minw — l(Qk + l’lﬁ\)k)z.
k w

The following theorem is now immediate using (3.30) with (5.14), (5.20), and (5.21).

Theorem 5.1. If F(H,,s) is given by (5.5) then p(yw) satisfying Theorems 3.1 and
4.1 is given by

p(ow) = max{n}cinz((o,k — Aok — A)
+ [S (0min(Bo) — (max 'C)”Z\B”F)]_Z, (5.22)

min ;(Qk — A —w, minw — ;(Qk + AQk)z},
and Fy(H2,jw) is given by

(5.23)

n
i=1

Fy(Hz,yw) = diag{z bij""r?bij}

j=1
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Furthermore, the (, ) element of Fyq(Hz, jw) is given by

[Foa(Hz,3w)) = Z biek2bje. (5.24)
=1

Using (5.23) and (5.24) and following a similar procedure used to develop Theorem

5.1, we obtain the following result.
Theorem 5.2. Let F(H;,s) be given by (5.5) then P(jw) satisfying Theorem 4.2 is

given by

P(yw) = diag{pr(w)},_,, (5.25)

where

prr(ow) = max{2(Co,k — AL)(Qox — A)
m 2
+ Z[S((bkj —A/Bkj)ﬁj)] . (5.26)

.11
min —Qi—wl .
e’ w

In addition, the (i, 7) element of Fyq(jw) satisfying (4.14) of Theorem 4.2 is given by

[Foa()],; = D _(1Bo,iel + ABie)}(|Bo,jel + ABje). - (527)
£=1

6. Extensions to Dynamic Compensation

In this section we generalize the results of Section 5 to dynamic compensation. Once
again we assume colocated rate feedback with negligible sensor and actuator dynamics so
that (5.1) and (5.2) hold. The following two theorems provide performance bounds for

positive real systems controlled by strictly positive real dynamic compensators.
Theorem 6.1. If F(Hz,s) = BK(s)BT then p(jw) satisfying Theorems 3.1 and 4.1

17




is given by

p(w) =ma-x{mkin 2(Cok — ACk)(Qo,k — A%)
. 2
5[5 (omin (B M) ~ s (MONIEB )

mm( (Qo,x — AQk)2 - w) - %Jmax(K(]w) KH(]w)) (amax(Bo) + IIABHF)

mkin(w - -‘;(Qo,k + AQk)2) - %amax(K(]"-’) - KH(]w))(Umax(BO) + ”AB”F) }'r

where
K(w) + K¥(qw) = M(uw)M¥ ().

Proof. From (5.7) and (5.9) we have

He
> minz(Co E— &k)(ﬂo k— mk)
+ min —/\mln[F(H2,]w) + FH(HZ,JW)]
Hp€eXl,
Next, note that
/\min[F(H2,Jw) + FH(H27.7"‘))] = ’\mm (B I\ (Jw) + IX’H(]“)))BT)’
= Amin (BM(]w)MH (]w)BT)

= Umin(BM(Jw))
= 02,.((Bo + AB)M(jw)).
Now, using (2.20) it follows that
omin((Bo + AB)M) 2 omin(BoM(jw)) — omax(ABM(jw)),
> Omin(BoM(30)) = Omax(M(10))max (AB),
> Omin(BoM(3w)) — Omax(M(3w)) | BB -

Noting that omin(BM(jw)) 2 0, (6.4), (6.5), and (5.6) yield

1
in = Amin[F(Ha, FH(H,,
pin 5 Amin(F(Hz, w) + F(Hzy o)

2
> 2|8 (omin(BoM(3)) = Imax(M (1)) I 5B )
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mlﬁ'z')\min[q) Y(Hy,gw) + F(Hz, ) + @~ H(Hy, jw) + FP(Hz, jw))]

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)




It now follows from (6.3) and (6.6) that
mii-ll %Amin [®~1(Hy, jw) + F(Ha, ) + & F(Hy, ) + FH(H;, jw)]
He

> min2(Co.k — Ak)( Qo — AQk) (6.7)

b 1[5 mn (BoM() = o MONIEBF)]

Similarly, using (5.15) and (5.17) we obtain

.1 ~ _
min 5 Amin[2 7 (Hr, ) = 92 H(Hy,w) + 3F(Hz,jw) — 3FH (Hap, 30)]

He . . ] (68)
> min—(Qo,k - AQk)Z -—w+ min _/\min [_](F(Hg,]w) - FH(H27.7"‘J))]‘
k w Haell, 2
Hence,
1 1
’Z‘Aminb(F(H2,]w) - FH(H2$.7w))] Z _Eamax(F(HZ,]w) - FH(HZ’]“))),

— —%Umax (B(K(jw) — K¥(jw))BT),

> 2 hun(B)oman (K (1) = K¥(30)),

2 = (omax(Bo) + IBB|r) omax (K (1) = K* ().
- (6.9)

Finally using (6.8) and (6.9) it follows that
1 - -
min, §Amin[7(‘1> Y(Hy,w) — @ H(Hy, w)) + 3(F(Hz,3w) — FP(Hz, j))]
> mkin;ul-(ﬂo,k - A% - w (6.10)

~ 5 0max(K (1) = K¥ (7)) (9max(Bo) + |1 ABr)".

Using a similar procedure given above we obtain
i = in (3 (H, ) = 87 (1, 10)) + 2(F (H ) = F (2T, 1)
>min w— = (Qo +A)? (6.12)
— Somax(K () ~ K¥(30)) (omax(Bo) + |BBr)’.
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Hence, using (6.7), (6.10), and (6.11) and Theorem 3.1 the theorem is proved. [J

The next theorem gives the second performance bound for the dynamic compenstor
case. Using Theorem 4.2 and a procedure similar to the one employed in the previous

theorem, the following result is immediate.

Theorem 6.2. Let F(H,,s) = BK(s)BT. Then P(jw) satisfying Theorem 4.2 is
given by
P(jw) = diag{par (3w)} 1 (6.12)

where

pre(w) = max{z(co,k — A2k — AT

+ Damin (K () + KA (0) S [5(Bosa ~ BBu)]

=1

. Q(2) k 1 H = ~35 12
min| —= —w' = 5Omax(K(w) = K7(w)) ;[IBo,ul + ABuy] }
, (6.13)
In addition, FLq(jw) satisfying (4.14) is given by
[Foa(30))ij = Omax(K () [3_(1Bo,itl + BBix)?] *[Y_(1Bojel + ABu )], (6.14)

k=1 k=1

Remark 6.1. Note that in general the performance bounds given by Theorems 6.1
and 6.2 are more conservative than the bounds given by Theorems 5.1 and 5.2 since they

do not exploit the diagonal structure of the controller assumed in Section 5.

Although there is no general theory yet available for designing positive real dynamic
compensators, a variety of techniques have been proposed based on H; theory [31-38]
and H,, theory [38-40]. Next, for completeness, we present a systematic approach for
designing strictly positive real dynamic compensators for positive real plants. Specifically,
for simplicity we restrict our attention to flexible structures with n, force inputs and
n, velocity measurements so that the colocated admittance, or driving point mobility, is

characterized by

Mi(t) + Cd(t) + Ka(t) = Bu(t), (6.15)
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() = BT (1), (6.16)

where M, C, and K are mass, damping, and stiffness matrices, respectively, and B is

determined by the sensor/actuator location. In this case the state space realization of
(6.15) and (6.16) is given by

o[ Laton sl | ] ][44

. (6.17)
[0 BT] | 0 | "]

Note that under the assumption of proportional damping the vibrational model in (6.15)

and (6.16) can always be transformed into the form of (3.1). Finally, with G(s) given by
(6.17) it follows that (2.23) and (2.24) are satisfied by [35,38]

Qo = [Ko_l Mo_l}, L= [\/iM(J“IC’%]' (6.18)

Next, we recast (3.1) in a state-space form and address the strict positive real controller

synthesis problem. Specifically, given the 2nt"-order minimal positive real plant

2(t) = Az(t) + Bu(t) + Dyw(t), (6.19)

- y(t) = Cz(t) + Dyw(2), (6.20)
we seek to determine a 2n'**-order dynamic compensator —K(s) ~ A I

B
the form

£
—c. | o J°

o

Ec(t) = Aczc(t) + Bey(t),

(6.21)

u(t) = —Cez.(t), (6.22)

that satisfies the following design criteria:

: . ia] A -BcC.]. :

() the closed-loop system (6.19)-(6.22) given by A = BC A is asymptotically

. [ c
stable;
(77) the Hy performance measure
1 t
T(Ae By Co) 2 Jim - / T (s)Ry2(s) + uT(s)Ryu(s)]ds (6.23)
. - 0
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is minimized, where R; > 0, R; > 0; and

’z’ l Be is strictly positive real.
- [

Note that since the plant is positive real and the negative feedback compensator is

(i51) —K(s) ~

strictly positive real, condition (i) is automatically satisfied. Now, using the approach
proposed in [34,38] we have the following result for constructing strictly positive real com-
pensators. For convenience, define V; 2D, D'lr and V, £ D2D2T.

Theorem 6.3.[34,38]. Assume G(s) ™i® [ g l g
and L satisfy (2.23) and (2.24) where Qo is positive definite. Furthermore, assume that

] is positive real, and let Qo

there exist 2n X 2n nonnegative-definite matrices @ and P satisfying
0=AQ+ QAT + v — QC"V;1CQ, (6.24)
0=ATP+ PA+ R, — PBR;'BTP, - (6.25)

where R;, Ry, V3, and V; satisfy

Vi = LLT + BR;'BT >0, (6.26)
Vo=Ry, (6.27)
R, > CTR;'C. . (6.28)

Then the negative feedback compensator

—-K(s) ~

A l B, } _ [/i —QCTV,'E - BR;VBTP l QCTY,! ]
-C. | 0 R;'BTP ] 0
(6.29)

is strictly positive real and satisfies the design criteria (i), (¢z). Furthermore, the H,

performance is given by

J(Ac, B, Ce) = tr[QRy + QCTV; 1 CQP). (6.30)

In order to compare the positive real majorant bounds developed in this and the

previous section to the complex block-structured majorant bound [7] and the complex
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structured singular value bound [41], next we provide a synopsis of the results developed

in [7] and [41].

7. The Complex Block-Structured Majorant Bound and the Complex Struc-
tured Singular Value Bound
In this section we present a brief summary of the results from [7] involving the complex

block-structured majorant bound and [1,41] involving the complex structured singular

value bound. Consider the standard problem of a linear time-invariant dynamic system

given by
z(s) = Gu(s)w(s) + Grz(s)u(s), - (1)
y(s) = Gai(s)w(s) + Gaz(s)u(s), (7.2)
u(s) = As(s)y(s), (7.3)

where
As(s) € As £ {As : A(Jw) << Ay(pw)}. (7.4)

Note that (7.1)-(7.3) can be written as
#(s) = G(s)w(s), (7.5)
C(s) = A(s)3(s) + 9(s), (7.6)

where

w0 (a8 &8l d02[s )

=y & | 2(s) —aya|we) ] oy a |wls)
92 ], a2 [uI], e[ ).
The system given by (7.5) and (7.6) could, for example, represent an uncertain system

in a closed-loop configuration with the plant uncertainty A, “pulled out” into a fictitious

feedback loop as shown in Figure 1.

Next, we present a theorem which provides the complex block-structured majorant
bound along with a robust stability condition for the linear time-invariant system (7.5)

and (7.6).
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Theorem 7.1.[7]. The feedback system given by (7.5) and (7.6) is robustly stable for

all A, € A, if
pIGw)IMAGW) <1,  w € (0,00). - @)

Furthermore, the output #(jw) satisfies the bound
Z(w)m << [T = |G(w)MA(Gw)]) ™| G(3w)5(50) |y (7.8)

where
A a |0 0
A(]w) = [0 As(]w)] .

Next, we summarize the method for obtaining the complex structured singular value
bound [41] for the standard problem addressed by (7.1)-(7.3). First recall that for complex

multiple block-structured uncertainty As € Ay, where

Aps = {As : As = block-diag(Ay,Ag, -+, Ar), Aj € C™X™ii=1,.--,1}, (7.9)

and where my,---,m, are given, the complex structured singular value pa,,(G(jw)) is
defined by
pan(G(w)) £ (,min {omax(As): det(l — G()As) =0}) ™, (7.10)

while pa,,(G(yw)) = 0 if there existsno Ag € Aps such that det(] — G(yjw)As) = 0. It has
been shown [1,41] that pa,,(G(yw)) satisfies the inequality

pan(GOO) S inf  omex(NG2)G(w)N ™ () (7.11)

where NVa,, denotes the set of positive-definite scaling matrices which are compatible with
the uncertainty structure Aps. Recall that if the number of blocks in A is three or less

then the inequality in (7.11) is a strict equality [41].

As is well known [1,2,41], in order to consider robust performance within the complex
structured singular value framework involving the standard problem given by (7.1)-(7.3),

we introduce an additional uncertainty block A, between w and 2 so that

w(s) = Ap(s)z(s) (7.12)
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and require stability robustness in the face of all perturbations, including the fictitious

block Ap. In this case, (7.1)-(7.3) along with (7.12) can be written as

#(s) = G(s)w(s), (7.13)
w(s) = A(s)z(s), (7.14)

where
As) 2 [Ax;)(s) A:’(s)] . (7.15)

This feedback configuration can be captured by Figure 1 by setting ¥ to zero and replacing
A(s) by A(s). Finally, note that the output z(s) is related to the input w(s) by

z(s) = G(s)w(s), (7.16)

where

6(s) 2 [G11(s) + Gra(6) AN — Gra(6)Au(6)] ™ Gs(5)]
For the statement of the next result define
A = {A: A = block-diag(Ap, As), and As € Aps},
Ba,, 2 {4 : [ Asleo < % and A, € Aps},

1
Ba2{AcA:|Alleo< ;}.

Theorem 7.2. Let A € Ba. Then the feedback system given by (7.13) and (7.14) is
robustly stable for all A, € Ay if and only if

LA, (Ge2(iw)) < 7, w € (0, 00). (7.17)
Furthermore, if pa,,(G22(jw)) < pa(G(jw)) < « then

llz()llz < pa(G(w))llw(sw)ll2. (7.18)

Proof. The first part of the theorem involving robust stability is a direct consequence

of Theorem 4.2 of [41]. Now, to show the performance bound (7.18) let ua (G(w)) = 8 < 7,
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so that det(I — G(Jw)A) # 0 for all ||Alje < % Furthermore if pa,,(G22(jw)) < B, then
det(I — Gaz(Jw)As) # 0 for all |Allc < 5. Now, since det( — G(jw)A) = det(I -
Ga2(jw)As) det(I — G(yw)Ap), it follows that det(] — G(jw)Ap) # 0, for all ||Alle < -/15
Hence,

max  pa,(G(w)) < pa(G(w)).
83€AL 181l <F

Furthermore, note that

w)) < max G(yw)).
agx HaOUe) s | mex, ,#as (G0 )

Now, using (7.16) the performance bound (7.18) is immediate. [

Remark 7.1. Note that if, alternatively, ua (G(Hw)) < pa,.(G22(jw)) < 7 is satisfied
in the statement of Theorem 7.2 then (7.18) can be replaced by

lz(w)ll2 < paw.(G22 () l[w(sw)lz-

Since our uncertainty characterization considered in Section 3 is in the time domain,
we briefly outline a systematic approach to converting this uncertainty into the transfer
function presented by the standard problem representation in (7.1)-(7.3). First, recall that
an uncertain state-space model with disturbance Dw(t) and performance variables Ez(t)

can be viewed as a system in a feedback configuration with the gain As (see Figure 1),

that is,
z(t) = Az(t) + Bou(t) + Dw(?), . (7.19)
y(2) = Coa(t), (7.20)
with feedback
u(t) = Asy(?), (7.21)
and performance variables
z(t) = Ez(t). (7.22)
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Note that By and Cp in this formulation are fixed matrices denoting the structure of the

uncertainty. Now, it follows that (7.19)-(7.22) yield

z(s) = E(sI — A)"'Dw(s) + E(sI — A" Bou(s), (7.23)
y(s) = Co(sI — A)~! Dw(s) + Co(sI — A)™* Bou(s), (7.24)
u(s) = Aqg(8)y(s), (7.25)

which are equivalent in form to the standard problem equations given by (7.1)-(7.3). Now,
with frequency and damping uncertainty, the system matrix in (3.1) can be written in

second order canonical form A = block-diag(fi;), i1=1,---,n, where

[0 1
Ai = [—Q,? —2c,-9,-]’

or, equivalently,

p 0 1 0 0 .
A.g - [—Qg,’ _-2(0,"90,’] + [7i 6'] 9 2 —— 1’-..,7’1,,
where € ; and (o,; are the nominal natural frequencies and damping coefficients respec-

tively, ; is the uncertainty in 2, and ¢; is the uncertainty in 2¢;Q;. Now, in order to use

the above framework it need only be noted that

o o]_fJo o)f[% o]fr 0] ._.,
el e 5] e

Of course, the above analysis also holds for a nominal closed-loop system with feedback
uncertainty. In this case however, appropriate modifications to the system matrices in

(7.23) and (7.24) are needed to capture the nominal closed-loop dynamics.
8. Illustrative Numerical Examples

In this section we present several illustrative numerical examples that demonstrate
the effectiveness of the proposed positive real majorant bounds (PRMB) over the complex
block-structured majorant bound (CBSMB) and the complex structured singular value
bound (CSSVB).

Example 8.1. (n =1, darﬁping uncertainty)
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Our first example considers performance bounding for the case n = 1 with one control

input and damping uncertainty. The closed-loop system is given by (3.26) with

2 2
@7 (Hy,0) = TEELAT

S

F(Ha,s) = kb2,
k=2 D=b=1,

and with
rad

Q=10@2r)—, (=001, Al = 0.009.
In this case, Theorems 4.1 and 4.2 give the same performance bound which is shown in
Figure 2. For this example, the complex block-structured majorant bound is totally non-
conservative while the complex structured singular value bound gives the most conservative

performance predictions.
Example 8.2. (n = 1, frequency uncertainty)

This example considers the same case as Example 8.1 except that the damping ratio

is constant while the frequency is uncertain with

A0 = 5(2m) ™4,

S€EC

For the assumed uncertainty range both the complex block-structured majorant bound
and the complex singular value bound are infinite since, in this case, both methods predict
instability. The proposed positive real majorant bound gives a tight finite performance

bound. This is shown in Figure 3.
Example 8.3. (n = 3, frequency uncertainty in the first mode)

This example considers performance bounds for three closely spaced modes with one

control input and frequen'cy unéertainty in the first mode. The closed-loop system is given
by (3.26) with
_ . ST+ 2¢s + Q2
&7\ (Hy,s) = diag{ T2 Wy

S
F(H,,s) = k;BBT,

D=8,
kl = 2, B = [lalal]Ta
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and with rad rad rad

{Qu, 02, R} = {10(27)—, 15(27)—, 50(27)—1},
{¢1, 2, G} = {0.005,0.01,0.0025},

{ZS\Zl, mz, ms} = {5(27!’)%2%, 0, 0}

Once again both the complex block-structured majorant bound and the complex structured
singular value bound give infinite performance predictions. The positive real majorant
bound shown in Figure 4 gives a finite performance bound. This bound was obtained by

computing the minimum of the performance bounds given by Theorems 5.1 and 5.2 for

each frequency.
Example 8.4. (n=3, frequency and mode shape uncertainty)

In order to compare the positive real majorant bounds obtained by Theorems 5.1 and

5.2 and Theorems 6.1 and 6.2 this example considers the same case as Example 8.3 with
two sensors and actuators with both frequency and mode shape uncertainty. Specifically,
the frequency uncertainty is as in Example 8.3 and the mode shape uncertainty with the
assumed static controller are

11 __Jo.o1 0.01] 5 0

B=1|1 1|, AB=10.01 0.01}, K=[0 1].
11 0.01 0.01

The corresponding bounds are shown in Figure 5. Note that since the assumed frequency

range for this example is the same as the previous example the bounds of Section 7 do not

give finite predictions.

Next, using the frequency domain performance bounds given by Theorems 6.1 and
6.2 along with Theorem 6.3 for constructing strictly positive real dynamic compensators
we apply our results to a simply supported Euler-Bernoulli beam with multiple frequency

uncertainty.

Example 8.5. Consider the simply supported Euler-Bernoulli beam with governing

partial differential equation for the transverse deflection w(z,t) given by

Pw(z,t) 8 Pw(z,t),
m(x) 12 + 92 [EI(w)_a?z—_] - f(m’t)v . (81)
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and with boundary conditions

w(z,t)|z=0,L =0, EIQLZ;:E—Z—’QI,:(),L =0, (8.2)
where m(z) is mass per unit length and EI(z) is the flexural rigidity with E denoting
Young’s modulus of elasticity and I(z) denoting the cross-sectional area moment of inertia
about an axis normal to the plane of vibration and passing through the center of the
cross-sectional area. Finally, f(z,t) is the force distribution due to control actuation and

external disturbances. Assuming uniform beam properties, the modal decomposition of

this system has the form

w(z,t) =Y Wi(2)g-(t), (83)
L rTx
/0 mWi(z)ds =1, Wi(z) = ,/;;%sinT, r=1,2,..., (8.4)

where, assuming uniform proportional damping, the modal coordinates g, satisfy
, L
Gr(t) + 2¢Qrgr(t) + N2, (t) = / f(z, )W, (2)dz, r=1,2,.... (8.5)
0

For simplicity assume L = m and m = EI = 2/x so that 4/-% = 1. Furthermore, we place
a colocated velocity/force actuator pair at £ = 0.55L. Finally, modeling the first five modes
]T

and defining the plant state as ¢ = [¢1, ¢1, ***, g5, g5} , and defining the performance of

the beam in terms of the velocity at z = 0.7L, the resulting state space model and problem

data are

2 . 0 1
A = block-dia, , =12, = 0.01,
g [-93 —240,-] ¢

i=1,...,5

B=CT=[0 09877 0 —0309 0 —0.891 0 0.5878 0 0.7071]T,

B = 0 0809 0 -0.951 0 0.309 0 0.5878 0 -1
1=to 0o o o0 o0 O O o0 o0 O}

E;=[0 197, R =ETE,, Di=[B 0w}, D2=[0 19],

Va = Ry = D, DT = EJE; = 3.61.

Using Thoerem 6.3 we design a strictly positive real dynamic compensator K(s). Next,

we assume frequency uncertainty in both £, and Q; with ZS\Zl = 0.5 and AQ, = 0.5. The
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corresponding positive real majorant performance bound is given in Figure 6. Once again
this bound §vas obatained by computing the minimum of the performance bounds given
by Theorems 6.1 and 6.2 for each frequency. The complex block-structured majorant
bound and the complex structured singular value bound predict instability for the as-
sumed uncertainty range and hence give infinite performance bounds. In order to compare
the performance bounds using all three methods, the maximum uncertainty range in the
natural frequencies for which the two alternative methods guarantee stability is found.
Specifically, complex structured singular value a.ﬁalysis predicts stability for the range of
AQ; < 0.034 and AQ, < 0.134, while complex block-structured majorant analysis pre-
dicts stability for the range of Zi\h < 0.071 and Z?zg < 0.144. The parameter 'space for
the above predictions is shown in Figure 7. Note that the positive real result guarantees
unconditional stability. Now, with El = 0.034 and @2, = 0.134 which coressponds
to the largest uncertainty range for which all three robustness tests guarantee stability,
the comparision of the performance bounds for all three approaches is shown in Figure 8.
Note that the proposed positive real rﬁajorant bound gives the tightest robust performance
bound while the complex structured singular value bound (u-performance bound) is the

most conservative.

9. Conclusion

This paper developed frequency domain performance bounds for closed-loop systems
consisting of positive real plants and strictly positive real compensators. The results are
developed by using certain properties of the logarithmic norm in conjunction with ma-
jorant analysis. Unlike previous results in robustness analysis, the performance bounds
remain finite even when the uncertainty is made large. The examples compared the new
bounds with a previous majorant bound and the corresponding bound from complex struc-
tured singular value analysis. In all cases the new bound was much less conservative than
the alternative bounds. Future woric will involve extending these results to reduce the
conservatism in the analysis of closed-loop systems for which the plant and controller are

positive real only over a particular frequency band.
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Example 8.2: Frequency Uncertainty (Delta_Omega=5Hz)
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Example 8.3: Three Modes with SHz Uncertainty
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Example 8.4: Mode Shape Uncertainty
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Example 8.5: Euler-Bemoulli Beam: Dynamic Compensator
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Example 8.5: Euler-Bernoulli Beam
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Abstract

Robust performance analysis is very important in the design of controllers for uncertain
multivariable systems. Recent research has investigated the use of absolute stability criteria
to develop less conservative analysis tests for systems with linear and nonlinear real param-
eter uncertainties. This paper extend previous work on optimal H, performance analysis
with the Popov criterion. In particular, an algorithm is presented that can be used to ana-
lyze systems with multiple uncertainties that have both upper and lower robustness bounds.
More general Popov stability multipliers and less restrictive assumptions on the structure
of the uncertainty block are also included. The analysis is performed using a numerical ho-
motopy algorithm. The technique is demonstrated on robust compensators that have been
designed for the Middeck Active Control Experiment (MACE):  Shuttle program scheduled
for flight in December, 1994. The analysis clearly shows the relative robustness capabilities
of the robust controllers used in the iterative control design methodology that has been de-
veloped for the uncertain dynamics of MACE. The analysis is also combined with Popov
controller synthesis to yield a more sophisticated design technique for compensators that
provide guaranteed robust performance.
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The Popov analysis and synthesis algorithms have been developed from research or the
Popov stability criterion [12] from absolute stability theory [11,13-17]. The absolute stability
criteria provide sufficient conditions for the stability of a system in feedback with a particular
class of sector-bounded, static nonlinear functions [12,17). Note that a class of nonlinear
functions can be associated with a set of system uncertainties considered in robust control.
Thus, the Popov controller synthesis approach to robust control directly considers nonlinear
real parameter uncertainties and treats linear uncertainties as a subset of this much broader
class.

The state space tests from absolute stability theory with Lur’e-Postnikov Lyapunov func-
tions are well documented [17], but it is only recently that the significance of the parameter-
ized Lyapunov functions for robust control, in terms of a restriction on the time variation of
the uncertainty set, has been understood [11,15,14,18]. A frequency domain representation
of the absolute stability criteria is used in Refs. [19, 14,18,17,20] to demonstrate that the
robustness tests include magnitude and phase information about the system uncertainties.
Both characteristics of the uncertainty must be considered to develop nonconservative tests
for a system with real parameter uncertainty that is restricted to have phase of +180°.

The primary purpose of this paper is to present several advances in Popov controller
analysis and synthesis. Examples in Ref. [21] illustrate that the state space Popov analysis
criterion is much less conservative than similar positive real and small gain (H) criteria.
This paper extends these previous results by considering systems with multiple uncertainties
that have both upper and lower sector-bounds. The stability criterion is also developed using

a more general stability multiplier
W(s)= H + N, | (1)

where N > 0, and H > 0 is not restricted to be the identity matrix, as required in Ref. [21].
Furthermore, the algorithm is developed with fewer restrictions on the structure of the system
uncertainty.

The optimal Popov analysis algorithm is demonstrated using several robust controllers
that were designed using a finite element model of MACE [2,22]. The results clearly show
the relative robustness capabilities of the various techniques, and thus further illustrate
their role in the iterative control design methodology discussed earlier. The best of these
controllers was refined using the optimal Popov controller synthesis algorithm developed
in Ref. [11,19,23]. Together, the two algorithms combine an improved analysis capability with
a synthesis technique that guarantees robust performance for systems with real parameter
uncertainty. In the process, this combination overcomes one of the main difficulties with
the original synthesis algorithm: developing the stability multipliers for large guaranteed
stability bounds [11,19]. '
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have both upper and lower sector-bounds. The structure of these uncertainties is also made
less restrictive by removing the assumption that CoBo = 0. This section provides an outline
of the homotopy algorithm, and an example of the approach is presented in the last section.

For clarity, the cost in Theorem 1 is rewritten here as
J= -i—tr (P + CT(M, — My)NCo)Va] (16)
where P is the solution of
0=ATP + PAn,+(C — BIP)TR;*(C — BIP) + aRx, (17)
and

Am 2 A— BoM;Co, (18)
C £ HCo + NCoAm, (19)
Cicc 2C — BT P, (20)
A1 2 A, — BoR;'C, (21)
Az 2 A — BoRy Crice. (22)

Note that, with these definitions, Eq. 17 can be rewritten in the more familiar form
0=ATP + PA; + C R;'C + Ry + PBoR;' BT P, (23)

The Lagrangian (L) for the system is then formed by combining the cost overbound in
Eq. 16 with the constraint in Eq. 17 using Lagrange multiplier matrix Q. The derivatives
of this Lagrangian with respect to the free parameters in the design are the first-order
necessary conditions that must be satisfied to determine an optimal solution. In particular,
differentiating with respect to P yields a Lyapunov equation for the Lagrange multiplier
matrix Q '

1
o=u%Q+QA§+En, (24)

Note that, if () refers to any free parameter in the optimization process, then 6L/8(-) =
8J/8(-) [27). The optimization problem then is to find values of o, H, and N that satisfy

07 4 1.
EE = Hl -_ tI‘ [QRXX] - —a'J = 0, (25)
% é H2 = é(Mz - MI)CO‘/xxC(:)r + 2RglcriccQA:2ng frmsd 0’ (26)
g—j%—]j: £ Hs = 2‘RO_1 riccQ(CO - (MZ - Ml)‘lelcﬁcc)T =0, (27)

where P and Q are the solutions of Eq. 17 and Eq. 24, respectively. Note that only the
elements of H, and Hj corresponding to free parameters in N and H can be set to zero in

the optimization process [11,15,18].
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Note that M,(0) = M,, and M;(1) = Ma;. The overall goal is to solve the optimization
problem at A = 1. However, it is usually quite difficult to develop valid initial conditions
for the optimization at this point. Thus, a starting point that is simpler to initialize 1s
introduced, and this corresponds to A = 0 in Eq. 33. The purpose of the homotopy procedure
is to obtain a solution to the optimization problem at A = 1 by starting at A = 0 and
predicting the solution at A 4+ a) based on the system derivatives and the solution at A [21].

The continuation map is defined as the gradient of the upper bound on the cost function

for the homotopy parameters M; and M,. To compute this map, define

Hl(n') )‘)
L(n,3) 2 | veen(Ha(n, V) |- (34)
vecy (Ha(n, A))

Then, as indicated by Egs. 25-27, the continuation curve is given by L(n, A) = 0 for A € [0,1].
Then, taking both « and 6 to be functions of A, we can differentiate L(n(}),A) = 0 with .
respect to A to yield Davidenko’s differential equation [28,29]

0Ldn 0L
hatiiatd A Wit 35
Bndx T B (35)
Together with 7(0) = 7o, this differential equation defines an initial value problem which, by
numerical integration from A = 0 to A = 1, yields the desired solution (1) (see Ref. [26] for
further details). As indicated by Eq. 35, the solution algorithm requires the computation of

the Jacobian of L(e, 6, A), which is given by

v L(e, 6,0\ =L, L], (36)
where
oL 8L
a 90 a0L
Lt g Wt gy (37)

The expressions for these gradients are given in the Appendix. The combined prediction-
correction sequence is presented in Table 1. The algorithm starts with a correction step that
updates the initial guess. When this step has converged, the value of A is increased, and the
changes in the multiplier coeficients are predicted in step 3d. The value of A is increased
until ||L(e, 8, ))|| is larger than a specified tolerance. The predictions of the coeflicients 7
are then corrected in step 4. The cycle is repeated until A = 1 or the stability prediction
‘limit is reached. The output from the program is a list of optimal multipliers and the cost -
overbound at several values of A, which define the different guaranteed stability regions.

The procedure in Table 1 is initialized by finding a set of scaling parameters for a given
controller so that acceptable solutions exist for Egs. 17 and 24. This step is typically one of

the most difficult parts of a gradient search algorithm such as the one described in this paper.

9
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Figure 2: Middeck Active Control Experiment (MACE) EM test article sus-
pended in 1-g by a three point suspension system.

ity active structural control in zero gravity conditions. The prediction of on-orbit closed-loop
dynamics is based on analysis and ground testing. The goal of active control is to maintain
pointing accuracy of one payload, while the remaining payload is moving independently.
References (1,2, 30] describe the experiment goals, hardware, and analytical modelling in
some detail.

The configuration of the MACE test article was chosen to be representative of precision
controlled, high payload mass fraction spacecraft, such as Earth observing platforms, with
multiple, independently pointing or scanning payloads [31). The Engineering Model (EM)
is shown in Figure 2. Note that the X, Y, and Z axes are horizontal, vertical, and into
the figure, respectively. The test article consists of a flexible bus to which are mounted
two payloads, a reaction wheel assembly for attitude control, and various other sensors and
actuators. Each payload is mounted to the structure using a two-axis gimbal that provides
pointing capability. The EM is instrumented with angle encoders on each gimbal axis, a
three axis rate gyro platform mounted under the reaction wheel assembly, and a two axis
rate gyro platform mounted in the primary payload. The bus is composed of circular cross-
section Lexan™ struts connected by aluminum nodes. The structure is supported for ground
tests by a pneumatic/electric low-frequency suspension system [32).

As discussed in Ref. [2], several robust controllers were designed for the MACE test
article using the finite element model discussed in Refs. [22,33]. Control experiments have
been performed for the full XYZ dynamics of MACE. However, for this paper, we consider

11
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For this ciosed-loop system, the cost function is determined by the nonnegative definite
matrices R, 2 CICq and Vi, & B.BJ. If the uncertainty in the open-loop system is

represented by A. + a4, then the model error for the closed-loop system is written as

AA-ol Onxnc] (45)

Ali 1 =
c|
Oncxn OnCch

The nominal system dynamics and model error in Eq. 42-45 can then be combined to write
the actual closed-loop system dynamics in the form of Eqgs. 2 and 3.

The advantages and disadvantages of using finite element models (FEM) for MACE con-
trol design are discussed in Refs. [2,3,33]. The primary advantage is that this analytical
modelling method can be used to predict the on-orbit dynamics prior to launch. However,
a key difficulty is that FEM’s tend to be much less accurate than equivalently sized mea-
surement models [34]. In particular, there tend to be substantial errors in some modal
frequencies and damping ratios, which is certainly true for a complicated structure such as
MACE. Note that, to retain the capability of predicting the 0-g dynamics of the MACE
test article, the measured 1-g data is used to update the physical parameters of the test
article model, and not just the frequency characteristics of a particular state space model.
This update procedure is a very difficult task, and is the subject of ongoing research (33].
Thus, the work in Ref. [2] used the FEM as given, and no attempt was made to update the
state space model to account for obvious damping or frequency errors, because this would
inconsistent with the purpose of the FEM in the MACE project [1].

For a system with many model errors, it is important to determine those that are most
critical to the control design. As discussed in Refs. [2,3], the most important uncertainties
to consider can be determined using a combination of analysis techniques based on the
singular values of the sensitivity function, the multivariable Nichols test, and preliminary
experiments. These techniques were used to determine that the frequencies of three modes
were the most important uncertainties for these control designs. Note that these errors
correspond to real parameter uncertainties in the system model.

The errors in these three modes are listed in Table 2. The finite element model results are
compared with an identified model from measured data [34). The “violin” description refers
to modes with substantial interaction between the test article and the suspension system.
Note that experience from these and other experiments has demonstrated that small errors in
the damping values tend to degrade closed-loop performance, but small errors in the natural
frequencies often lead to closed-loop instability. Thus, the model errors considered here
address the more important issue of modal frequency uncertainty. For future comparison,
note that the lowest frequency mode of these three was nearly destabilized by a very low

authority LQG design that achieved only a 4 dB performance improvement.

13
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Figure 3: Robust stability and performance analysis using several controllers for
MACE. Symbols x indicate nominal H, performance for each design.

perturbation factor. The actual dynamics for each uncertain mode can be written as A =
A; + aA;, where

AA; = 6;Bo;Coi, Boi = { jl ,and Coi = [w; 0], i=1,...,3. (47)

—w;
The B, and Cp matrices for the open-loop system are constructed from these two sets and
then represent the structure of the uncertainty in an internal feedback model. These matrices
are augmented with additional zeroes to compensate for the dynamics of the controller (19,
15], and they then can be used to represent the structure of the uncertainty in the closed-loop
system aAq. ’

Note that CoBo, = 0 with the uncertainty model in Eq. 47. However, the code used to
perform this example was written for the more general structure of A4 with CoBo # 0. Note
that removing the assumption in Ref. [21] significantly complicated the expressions for P in
Eq. 14 and R, in Eq. refeq:4.4. As indicated in Section 4, the code could also be used for the

block diagonal multipliers that are associated with repeated parameter uncertainties. This

15
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Figure 5: Diagonal elements of the stability multiplier H for the analysis per-
formed using the ME controller.

(a factor of 10) corresponds to a signiﬁéant performance improvement. The location of the
vertical asymptotes in each of the curves corresponds to the limits of robust stability for that
particular compensator.

For each controller, the symbol “x” on the performance axis indicates the H; performance
achieved by that design on the nominal design model. In each case, it can be seen that the
nominal performance and the worst case overbound are quite close. This observation agrees
with the results in Ref. [19], and further indicates that the Popov H; cost overbound is quite
tight. Also note that each of the SWLQG, ME, and MM designs have been implemented
on the test article, and that these designs represent the best performance that could be
experimentally achieved using that particular technique [2]. Thus, the compensators were
not necessarily designed for the same values of p and p. Furthermore, the best stabilizing
LQG design could only obtain approximately 4 dB on the hardware, so the LQG example
in the figure is presented just to show how sensitive optimal LQG controllers are to changes

in the modal frequencies.
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is a correction step which changes the multipliers at the initial value of Ag. These results
show that the multiplier coefficients change significantly with A, which indicates the need
for a good algorithm for predicting the changes from n(X;) to n(X: + a)). The symbols on
the graphs correspond to the results at the end of a prediction—correction iteration.

The results of this analysis can also be used to initialize a redesign of the robust con-
trollers using Popov Controller Synthesis [11,19]. An example of this procedure is illustrated
in Figure 6. The stable MM controller was used as the initial design, along with the multi-
pliers computed at M;()) = 0.0585. This point is indicated by the symbol “o” in Figure 6.
The controller was redesigned using a synthesis technique that optimizes the cost overbound
with respect to both the multiplier coefficients and the controller gains. The synthesis opti-
mization and stopping criterion are similar to the correction step in the analysis algorithm.
In Figure 6, the synthesis corresponds to a reduction in the cost overbound at a constant
value of M,()). The final result is shown in the figure by the symbol “x” at M,(A) = 0.0585.
As indicated, the robust performance at this level of the guaranteed stability bounds has
been improved by almost 1 dB.

To complete this example, the new Popov design was then analyzed in two different
ways. The algorithm was started at o = 1 x 1073 with the same initial values used in the
original MM analysis. The algorithm was also started using the multiplier values calculated
by the synthesis code. The fact that these two analysis curves essentially over plot indicates
that the analysis procedure is not overly sensitive to the initial conditions. These analysis
results indicate that the Popov design achieves superior nominal and robust performance as
compared to the MM controller, and that the robust stability boundaries are substantially
improved (~ 20%).

Thus, Figure 3 illustrates the utility of this analysis tool in an iterative control design
methodology based on several robustness techniques with differing capabilities and compu-
tational requirements. Furthermore, Figure 6 demonstrates that the Popov analysis and
synthesis techniques can be combined to overcome the difficulty of developing initial values

for the stability multipliers at large guaranteed stability bounds.

6 Conclusions

Good robust performance analysis plays a critical part in the design of robust controllers.
Previous results have shown that the Popov criterion is much less conservative than small gain
tests for systems with real parameter uncertainties. This paper extends this earlier work by
developing algorithms to analyze systems with multiple uncertainties that have both upper
and lower sector-bounds. The typical application of this procedure was demonstrated using
robust controllers for MACE. The combined optimal analysis and synthesis algorithms were

also used to design a new controller that yields better robust H, performance with larger
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Appendix: Jacobian Expressions

, As discussed in Section 4, solving the homotopy problem requires the computation of
the Jacobian of the homotopy map. The first part of the Jacobian in Eq. 36 is given by the

symmetric matrix

[ 6H1 L 6H1 6H1 1
Oa ON; OHj;
OH. OH.
Ly=1| » vecN(a_]\;-) vecn(gff) , (48)
1) 1
o - . veen( 08, )
i Mom;’ |

where H;, H,, and Hj are defined in Egs. 25-27. Note that only the free parameters of
N and H are considered in the calculation of L,. Also, the columns of L, are arranged to
be consist with the result produced by the vecy(-) operator. Let Ej = e;e], where each
element of the column e; is zero, except for the ith term which is unity. In the following, the

dimension of Ej; is the same as the dimension of H. For convenience, we first note that

oC
Ny EyCoAm, (49)
ilo}
oH; E;;Co, (50)
0Cucc O _70P
56, ~ 86, 706 (51)
oA, BRO .60,
OR;" -1 T\ p-1
BN; = —HRg (EijCOBO+(EijCOBO) )Rg ", (53)
a‘REI -1 -1 -1\T -1
H; —R3 (E(Mz — My)™h + (E(M2 — My)™ )" )Rg7, (54)
9C"R;'C _ 70R" ,6C ,0C 1
S =T C+C RS 5 (C7R; —6—9—) (55)

where, as before, 6, refers to any free element of H or N. The gradient expressions, in turn,

depend on the solutions to the equations

8P 0P
_ ATY-
0= A4, 25, —+———(9 Az + Ryy,
0= Az—gi +—ZQA2T . 1_'13012-115'T6PQ+(B0 1BT
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6Cricc aC BT BP
8%  ax °ax’

9A aR:?

gf=—30[(M1f—M1o)Co+ fo —C+ Ro1 ],
8C R;'C TaRo1 _,6C ) ac
== 9% 74+ CR: - + (TR o

o _ Ryt ([ (My = My)™(Mag = Man) — (Myg — Mio))(Mz — M)

+ [H(M; — Ml)_l((sz — Mao) — (Myg — My)) (M, — Mi)7'|T)RGY,

which are based on the solutions to the equations

8P OP 94,7 0A OR;! C" R;!
_ AT o4 o4 Tp, OV o U
0= Afor+ 55 A2+ 55 P+ P+ PRy By P + ——2—,
_ 499, aQ
25y T o
84, 8R;* r
8A, OR;Y - 0P
Then L, in Eq.66 can be written in terms of
8H 8 1 8P
By 100 p) — Str (5 + CFl(May = Mao) = (Mg = Mic)]NCo)Vio),
8H, 1
o ity = Mac) - (Mg = Mio)]|" CoVexCg
6.R ncc
+ 2y Cmc+R01 T5)Q47 + By 1c,,c:{
8CriccT 1 a
- Q( 6)\ R + sz‘cc ng O(le - Mlo))Bg‘}]Cér7
8H. 8RG* 8Cricc -
O e 9P G+ RS 22E)Q(Co — (M = M) B3 G

0
+ R_lcricc{_'(co - (M2 - M )_lRo-lcricc)T

6Cncc a ! - -
- %% gt 4 07 (T2 — RS(Ma - M)

[(sz — Mao) — (Myy — My, )] )(Mz — Mi)7'}].

(71)

(72)

(74)

(75)

(76)

Note that each of the Lyapunov equations for the derivative terms has the same dynamics

matrix, A;. In this work, the Lyapunov equations are solved using an eigenvalue decompo-

sition of A,. Thus, the decomposition need only be performed once per Hessian calculation,

which significantly decreases the computational effort required to determine this matrix.

25




Appendix H:

Generalized Fixed-Structure Optimality Conditions for H, Optimal Control

Harris Corporatiqn January 1995 00051.tex




March 1993
revised May 1994

Generalized Fixed-Structure Optimality Conditions
for H, Optimal Control

by
Emmanuel G. Collins, Jr. Wassim M. Haddad
Harris Corporation School of Aerospace Engineering
Government Aerospace Systems Division Georgia Institute of Technology
MS 19/4848 Atlanta, GA 30332

Melbourne, FL 32902
Sidney S. Ying
Rockwell International
Collins Commercial Avionics
MS 306-100
Melbourne, FL 32934

Abstract

Over the last several years, researchers have shown that when it is assumed a priori that a
fixed-order optimal compensator is minimal, the necessary conditions can be characterized in terms
of coupled Riccati and Lyapunov equations, usually termed “optimal projection equations.” When
the optimal projection equations for H, optimal control are specialized to full-order control. the
standard LQG Riccati equations are recovered. This paper relaxes the minimality assumption on
the compensator and derives necessary conditions for fixed-structure Hs optimal control that reduce
to the standard optimal projection equations when the optimal compensators are assumed to be
minimal. The results are then specialized to full-order control. The results show that the standard
LQG Riccati equations can be derived using fixed-structure theory even without the minimality
assumption. They also show for the first time that a reduced-order optimal projection controller
is a projection, described by a projection matrix g, of one of the extremals (a “central extremal™)
to the full-order H, optimal control problem. For nonminimal LQG compensators the projection
matrix v used in balanced controller reduction produces a minimal-order realization of the LQG
compensator, which is of course an optimal reduced-order compensator. For this special case, the
similarity transformations relating v, u and the optimal projection matrix 7 from standard optimal
projection theory are explicitly defined. Finally, an illustrative numerical example is presented to
demonstrate the design framework discussed in this paper for H, optimal, reduced-order, dynamic
compensation.
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1. Introduction

One of the foundational results in modern control theory is the development of a characteriza-
tion of the globally optimal H; controller via algebraic Riccati equations [1-3]. This result has tradi-
tionally been derived via the Calculus of Variations or the Maximum Principle in conjunction with
the Separation Principle [2-4]. Unfortunately, the optimal H or LQG (Linear-Quadratic-Gaussian)
controller has dimension equal to that of the plant, although it may have minimal dimension which
is less than that of the plant. This has motivated the search for optimal reduced-order controllers,

that is, controllers that have dimension less than that of the plant.

Because the Calculus of Variations and the Maximum Principle characterize globally optimal
solutions, these traditional methods for deriving the LQG result do not extend to the development
of characterizations of optimal reduced-order controllers. Hence, researchers have developed op-
timization methods that allow the dimension and structure of the controller to be constrained a
priori (see, e.g., [5-9]). These methods are usually based on Lagrange multiplier theory and will be
called here “fixed-structure approaches.” The “optimal projection” characterization of the neces-
sary conditions for optimal reduced-order control [6] was derived using a fixed structure approach
and yields the standard LQG regulator and observer Riccati equations when the dimension of the
controller is specified to be equal to the dimension of the plant. However, the original optimal
projection results and numerous extensions (e.g:, [7-9]) were derived by a priori assuming that the
controller is minimal. This is a limiting assumption since it is known that even an LQG controller
is not always minimal [10]. It should be noted here that the LQG Riccati equations are also de-
rived in [11) using a fixed-structure approach. However, the results there a priori assume that
A. = A+ BC. — B.C, where (A, B,C) is the plant triple and (A, B.,C.) denotes the controller

triple.

This paper presents optimality conditions that are derived without assuming the minimality
of the compensator. A similar approach was also considered in [12]. The results are specialized to
the case in which the compensator is constrained to have the dimension of the plant. It is shown
that even when compensator minimality is not assumed, fixed-structure theory is able to derive
the LQG Riccati equations. It is also shown that there exist sets of coupled Riccati and Lyapunov
equations that are identical in form to the optimal projection equations for reduced-order control
but actually characterize extremals to the full-order compensation problem. This leads to a new

interpretation of an optimal projection controller. In particular, an optimal projection controller

1




is a projection, described by a projection matrix u, of a “central” extremal to the I, optimal,

full-order compensation problem.

For nonminimal LQG compensators the projection matrix v used in balanced controller reduc-
tion produces a minimal-order realization of the LQG compensator, which is of course an optimal
reduced-order compensator. For this special case, the similarity transformations relating v, s, and

the optimal projection matrix = from the standard optimal projection theory are explicitly defined.

The primary reason for developing the Riccati equation approach to reduced-order dynamic
compensation is to enable the development of efficient computational algorithms for controller
synthesis. In particular, the goal has been to develop algorithms that exploit the special structure of
the Riccati equations. This paper gives a brief overview of the continuation algorithm developed in
[13, 14] that utilizes the special Riccati-equation structure. The results are illustrated by developing

reduced-order controllers for an important benchmark problem in structural control.

The paper is organized as follows. Section 2 presents the optimal fixed-structure dynamic
compensation problem and some preliminary lemmas. Section 3 develops necessary conditions
characterizing solutions to the optimal fixed-structure dynamic problem without an a prior: minimal
compensator assumption. Next, Section 4 specializes the optimality conditions to the case of full-
order dynamic compensation and discusses the relationship between a “central” extremal and the
LG compensator. Section 5 demonstrates the utility of the Hy optimal reduced-order controller
design framework discussed in the previous sections with a benchmark numerical example. Finally,

Section 6 presents the conclusions.

Notation
R, IR"**, IR" real numbers, r x s real matrices, IR™*!
IE expected value
R(X),N(X) range space of matrix X, null space of matrix X
Xt Moore-Penrose generalized inverse of matrix X [15]
X# group inverse of matrix X [15]
X2>20,X>0 matrix X is nonnegative definite, matrix X is positive definite
Orxs 7 X 8§ zero matrix
I, r X r identity matrix




|
2. The Optimal Fixed-Structure Dynamic Compensation Problem

Consider the nt*-order linear time-invariant plant
i(t) = Az(t) + Bu(t) + Dyw(t), (2.1a)

y(t) = Cz(t) + Dw(t), (2.1b)

where (A, B) is stabilizable, (A,C) is detectable, z € IR",u € R™,y € R',and w € R% is a
standard white noise disturbance with intensity Iy and rank D, = [. The intensities of Dyw(t) and
Dyw(t) are thus given, respectively, by V; = DD >0, and V; = DQD;T > 0. For convenience, we
assume that Vi, £ Dy D;r = 0, i.e., the plant disturbance and measurement noise are uncorrelated.
The goal of the optimal fized-order dynamic compensation problem is to determine an ntk-order

dynamical compensator

To(t) = Aco(t) + Bey(t), (2.2a)
u(t) = —Cez(1), (2.2b)
which satisfies the following two design criteria:

(i) the closed-loop system corresponding to (2.1) and (2.2) given by

i(t) = Az(t) + Dw(2), (2.3)
where
(1) & [;c((tt))], Az [ch 'ﬁ?], D2 [BZ‘)Q], (2.4,5,6)

is asymptotically stable; and

(i7) the compensator minimizes the steady-state quadratic performance criterion
t
a1 T T
J(Ae, B, Ce) = !lirr;o ?IE [z7(s)Riz(s) + u (s)Rou(s)]ds, (2.7)
4 .

where R; > 0 and Ry > 0.

Although a cross-weighting term of the form 2z7(¢)Ryou(t) can also be included in (2.7),
we shall not do so here to facilitate the presentation. With the first criterion. we restrict our

attention to the set of stabilizing compensators, Sc = {(Ac, B., C.): A is asymptotically stable}
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which guarantees that the cost J is finite and independent of initial conditions. The cost (2.7) can

now be expressed as

J(Ac, B, Ce) = lim IE[zT (1) R3(1)), (2.8)
where
D A R] 0
re|f sz]. (2.9)

Next, by introducing the performance variable
2(t) £ Eyz(t) + Eyu(t) = Ei(t), (2.10)
and defining the transfer function from disturbances w to performance variables z by
H(s) & E(sIr — A)7' D,

where E = [E, E,C.),and #i Z n + ng, it can be shown that when A is asymptotically stable, (2.8)
is given by J(Ac, Be, C.) = ||H(s)]3. For convenience we thus define the matrices R, 2 ETE, and
R, & EI E; which are the Hy weights for the state and control variables. Since A is asymptotically
stable, there exist nonnegative-definite matrices O € R™*™ and P € IR™*" satisfying the closed-

loop steady-state covariance equation and its dual, i.e.,

0=A0 + QAT+ V, (2.11)

0=ATP+ PA+R, (2.12)
where

-2 [V 0

Ve [O BCVQBE]. (2.13)

The cost functional (2.7) can now be expressed as
J(A¢, Be,Ce) = tr QR = tr PV. (2.14)

Furthermore, Q and P can be expressed in the partitioned forms

Qz Q’% Q12 ’Ql IRnxn’Q2 €IR.n°xn‘, (215)
Ql? Q

D P Py nxn neXn,

P:[Pf“; ﬁz“}’Plemx’P“IR‘x‘- (2.16)
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Note that Q; is the covariance of the plant states, @ is the covariance of the compensator states
and Qi is the cross-covariance of the plant and controller states. Using (2.6), (2.9). (2.13) (2.15)
and (2.16), and expanding (2.11) and (2.12), yields

0= AQ, + Q1AT — BC.QT, — Q12CTBT + 1, (2.17)
0= AQ1z + QuAT - BC.Q; + Q:CT B, (2.18)
0= AcQ2 + QAT + B.CQ12 + QLCTBT + B.V, B, (2.19)
0=ATP, + LA+ CTBI P}, + PuB.C + Ry, (2.20)
0=ATP;, + PyA.+ CTBTP, - P BC,, (2.21)
0= ATP, + PyA. — PLBC. — CIBT Py + CIR,C... (2.22)

Before presenting the main theorems we present the following key lemmas and definitions which
are useful in stating and proving the main results of the paper. First, we introduce the notion of a
projection. Specifically, let X3 and X, denote subspaces of a linear vector space X’. Then A} and
X, are a decomposition of X if Xy and A% are disjoint, i.e., X1 N &> = 0, and every vector z € X
can be uniquely expressed as z = z; + z9, such that z; € &; and z, € A,. A’ is called the direct

sumof A7 and Xy, or, X' = &7 @ A%.

Definition 2.1. (Rao and Mitra [15]). The linear operator L : z — z; is called a projection

on A; along A).
Definition 2.2. A n X n matrix 7 is a projection matriz if 7 is idempotent, i.e., 7% = 7.

Remark 2.1. A projection matrix 7 defines a projection on R(7) along A(7), which implies
that for two projection matrices 7, and 7o, if R(71) = R(72) and A (my) = A(7;) then 7, and 7,

define the same projection.

Lemma 2.1. (Rao and Mitra [15]). Suppose X and Y are matrices with compatible dimen-

sions. Then
(i) N(Y) C MN(X)if and only if XYY = X.
(i) R(Y) C R(X)if and only if XX1Y =Y.

Lemma 2.2. Assume A is asymptotically stable and ( and P are the 7 X 7 nonnegative-
definite solutions of (2.11) and (2.12). Let Q and P be partitioned as in (2.15) and (2.16). Then,

the following relations hold:




(i) N(Py) C N(Pr2).

(i)) N(Py) C N(Co).
(ii1) N'(P,) is the unobservable subspace of (A, C.).

(iv) N(Q2) C N(Qr2)-

|
|
|
|
|
(v) M(Q2) C N(BJ).
(vi) N(Q2) is the uncontrollable subspace of (Ac, Bc)-

Proof. Let v € N(P,), or, equivalently, Pyv = 0. Consider a vector z defined by

~ | Piov
L2 12 .’
Qv

where a € IR is arbitrary. It follows from P > 0 that
2T Pz = vTP;gP1P12'u + 2avTP1T2P12v > 0.

The above expression is true for all @ € IR if and only if Pi2v = 0, which implies v € N(Py2), or,
equivalently, A (P;) C N(P12).

Forming v7(2.22)v and noting P,v = 0 and Pav = 0, yields vTC’;ngCCv = 0. Since R, > 0,
we obtain C,v = 0, which implies v € N(C,), or, equivalently, N(P2) C N(C.).

Forming (2.22)v and noting Ccv = 0, P,v = 0, and Pyv = 0, yields Py A.v = 0. Using property
(if), PyA.v = 0 implies C;A.v = 0. Thus, v € unobservable subspace of (A.,C.), or, equivalently,
N(P,) C unobservable subspace of (Ac,C.). Using the dual approach, properties (1v),(v) and (vi)

can be verified. O

Lemma 2.3. (Albert [16]). If A is asymptotically stable, then

P, = PP} Py, PL = P,PIPS, (2.23a,b)
Q12 = Q12Q1Q2, QF = @:Q1Q7%, (2.24a,b)
Ce=C.P}P,, CT = P,PIC, (2.25a.0)
B. = Q:Q1B., BT = BIQ1Q,. (2.26a.b)

Proof. The result is a direct consequence of Lemma 2.1 along with statements (7). (ii),(v),

and (v) of Lemma 2.2. [




Lemma 2.4. Suppose () € IR”"*" and P € IR™*™ are nonnegative definite with rank Q = n,,

rank P = np and rank QP = n,. Then, the following statements hold:
(i) There exists invertible W € IR™*" such that W-1QW-T and WTPW are both diagonal.
(i) QP is diagonalizable and has nonnegative eigenvalues.
- (iii) The n X n matrix
r2QPQP)* (2.27)
is idempotent, i.e., T is a projection matrix and rank 7 = n..

Furthermore, there exists a nonsingular matrix W € IR®*" such that

r=W [Iaf 8] w1, (2.28)

In addition, if we define 73 £ ], -7, then rank 7, = n — n,.

(iv) There exists a nonsingular transformation W € IR™*" such that

Ql On,x(n,—n,) On,x(nq—n,) On,xn,
A O — 0 0 0 .
=W | Ynp=nr)xn, w1t 2.2
“ O(nq—n,.)Xn, 0 Qs 0 ’ ( 9)
On,x'nr 0 0 0
Ql On,x(np—n,) On,x(nq-—n,) On,.xn.
- - O(n. — Qs 0 0
P=w"T | (rp=n)xn 2 w1, 2.30
Om ), 0 0 0 ' (2.30)
On,xn, 0 0 0

where n; = n — (n, + ng — n,) and Q; € R™™™, Q, € R(p—mr)X(np=nr) 5nd Q4 €

R(me=nr)x(ne=%s) 31 diagonal and positive definite.

(v) Suppose n. > n, + ng — n,. Then there exist G,I" € IR"*", and M € IR"<*™ such that

R(GT) = R(Q), R(I'T) = R(P), and rank M = rank QP = n, (2.31a,b,¢)
OP =G™MT, (2.32)
1 0
[\GT =T ny Ny X(Ne—ny) T'—l, )
O, -, )5, 0 , (2.33)

where T is an arbitrary n. X n. nonsingular matrix.
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(vi) The matrices G,I' € IR™*™ and M € IR™ " satisfying (2.31)-(2.33) are unique except
for a change of basis in IR™, i.e., if G',I" and M’ also satisfy property (v), then there
exists nonsingular § € IR™*™ such that G’ = §TG,I" = §~!I', and M' = ST MS.

(vii) If G,I" and M are as in (v), then
(QPY* = GTM'T, (2.34)
T2 QP(QP)* =G™I. (2.35)
Proof. Properties (i)-(iii) are stated and proved in [17]. Property (iv) is a direct consequence

of Theorem 4.3 in [18].

To prove (v) we note that using property (iv), () and P can be contragrediently diagonalized -

as in (2.29) and (2.30), respectively. Thus, it follows that
QP =W o On, x(n=n) | =1,

O(n——n,)xn, 0

Furthermore, using the fact that for arbitrary dimensionally-compatible matrices X" and ¥, R(X') =

R(XXT) and R(XY) = XR(Y), it follows that

1
Ql : On,.x('n,,—n,) On,x(nq—n,) On,xn‘
R(Q) - VVR( O(Tlp""nr)an 0 01 0 )
O(ng=n,)xn, 0 132 0
On, xn, 0 0 0
Similarly, we can obtain
1
2,2 On,x(np—n,) On, x(ng—n,) On, X7y
1
R(P) = WTR(| Onp—no)xn, Q,2 0 0
O(nq—n,)xn, 0 0 0
On,xn, 0 0 0
Next, choose
Inr On,x(n,-—n,) O'n,x(ﬂq—'n.,.) On,xu,
Oin. — 0 0 0
G = (ng—ns)Xn, M,‘T
O(nq—n,)xn, 0 Inq—n, 0 ’
O(nc—(n,,-‘l-nq—n,))xrc, 0 0 0
Iny Onrx(n,,—n,) On,X(nq—n,) On,.xn,
On. - I, . 0 0
I = (np=n,)xn, Ny —ny VV_I.
O(nq_nr)xnr O 0 0 I
O(Tlc—(nﬂ+nq—n..))xn, 0 0 0
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AI’ — Q’i’ Onrx(nc"nr) .
O(n, —n,)xn, 0

Then it is easy to show by construction that (G', M', I'") satisfy (2.31)-(2.33) with T = I,,_ for this

particular case which proves property (v).

To prove property (vi), consider a general triple (G, M, I') satisfying (2.31)-(2.33). Noting
the above expression for R(Q), it follows that the general expression for a matrix G satisfying

R(GT) = R(Q) is

Gl On,x(np—n,) On,x(nq—n,) On,xn,
0 0 0 0
G = (np=nr)xn, VVT,
O(nq—n,)Xn, 0 G 0
O(nc_(np+nq_nr))x"r 0 0 0

where G; € IR™*™ and G5 € IR(®~™)X("a="+) are nonsingular. Noting the structure of G and
G', we can always find a nonsingular n. X n, matrix T such that G = TG”IG’. Similarly, using the
identity that R(I'T) = R(P), there exists a nonsingular n, X n. matrix Tp such that I' = TrI".
However, using (2.33) yields Tr = T = T. Furthermore, it follows from (2.32) that M = TM'T™).
Thus (G, M, I') is unique except for a change of basis in IR™.

Finally, to prove (wii) it follows from properties (v) and (vi) that for a general (G, M,I")
satisfying (2.31)-(2.33),

.—l A
GTM'T =W[ o O x(nene) | =1 = (@ PY*,
(n—n.)xn, 0
and GTI = W [Igr g] W-l=r O

Definition 2.3. A triple (G, M, I') satisfving (2.31)-(2.33) with G, I" € IR™<*" M € IR™ X",
and n. > n, = rank QP is called a nth-order generalized projective factorization of QP. lf n. = n,,

then (G, M, I') is called a projective factorization of QP [17).

Lemma 2.5. Assume that A is asymptotically stable and that Q and P are the 2 x @
nonnegative-definite solutions of (2.11) and (2.12). Let @ and P be partitioned as in (2.15) and
(2.16) and define

0 £ 01,Q1Q%. (2.36)
P £ p,PIPL. (2.37)

G = QlQ%. (2.38)




M = Q. P, (2.39)

and

I'=-P}P]. (2.40)

If
PhQu + P2Q; = 0, (2.41)

then the following hold:
(i) The nonzero eigenvalues of QP and @, P, are identical.

(ii) The triple (G, M, TI") satisfies property (v) of Lemma 2.4, or, equivalently, (G, M,I') is a

nth-order generalized projective factorization of QP.

Proof. First, note that it follows from (2.36) and (2.37) that
QP = ngQgQ?QPnPQTP;E (242)

Next, using (2.41)7, it follows that Qf, P12 = —Q2 P, which substituting into (2.42) yields QP =
—leQgQng P:,TPII:_,. Since A is assumed to be asymptotically stable, using (2.23b) and (2.24a) of
Lemma 2.3, yields

QP = —Qu P. (2.43)

Finally, it follows from (2.43) and (2.41)T that
MQP) = Xi(=Qu2Pih) = Mi(=PhQ1) = Mi(PaQo),

where \;(-) represents a nonzero eigenvalue of QP. Thus, the nonzero eigenvalues of QP and Q, P,

are identical.

Next, without loss of generality, let rank Q2 = n, and rank P, = n,. Using the property (i),
yields
rank Q,P; = rank QP = n,. (2.44)

Thus, using (2.44) and (2.39) it follows that rank M = rank QP. Furthermore, it follows from
(2.38), (2.39) and (2.40) that

GTMT = -Q1,Q1Q, P, P} PL.

10




Next using (2.41)T, yields (2.32)'. Computing (2.40)(2.38)7, yields I'GT = _PZTP]’];,QIQQ;. Now
using (2.41), we obtain

IrGT = P} P,Q,Q1. (2.45)
Since Q, and P, are nonnegative definite, using property (iv) of Lemma 2.4 with n = n., there

exists a nonsingular 7" € IR *™ such that

Ql On, x{n,—n,) On,x(nq—-n,) On,xn, ‘
O(n, —n,)xn 0 0 0 T
= pnr) X 4
Q=T | 0 o, o | T (2.46)
On, xn, 0 0 0
Q1 On,x(n,,—n,) On,x(nq—n,.) On,xn,
— -7 0 Ny—Tn,)Xn, 2 0 0 -1
P,=T O(n:—nr))(nr 0 0 0 T, (247)
On, xn, 0 0 0

where ny = n. — (n, + ng — n,;) and Q; € R™ X", Qy € R(Pe=ne)X(m=nr) and Q, €

IR(Pe~nr)%(me=nr) are diagonal and positive definite.

Forming (2.46)(2.46), yields

Inr Onfx(np—nr) Onrx(nq—nr) Onrxnl
O(ny—n 0 _
Q@ =T o7 0 Loy o |77 (2.48)
0n,xn, 0 0 0
Similarly, (2.47)7(2.47) yields
Inr On,.x(n,,——n,) On,x(nq—n,) On,xn.
t — O(np—n,)xn, [n,—n, 0 -1
FiPy =T | gl ; 0 o T (2.49)
O0n, xn, 0 0 0

Substituting (2.48) and (2.49) into (2.45), yields (2.33). Note that () is symmetric which implies
that Q) is symmetric, Q) = (QH2(Q1)2, and R(Q)) = ’R((Q;)%) Thus, it follows from the basic
matrix geometric properties that
R(Q) = R(Q12Q1Q1)

= R(Qu(@})*(@)QT)

= R(Q12(Q})?)

= QuR((Q})*)

= QR(Q1)

= R(Q12Q1)

= R(GT).

2
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Following the dual approach yields R(P) = R(I'T). O

With the above collection of lemmas and definitions we proceed in providing necessary con-
ditions for optimality for the generalized fixed-structure dynamic compensation problem. These

conditions are developed in the following section.
3. Optimality Conditions for Fixed-Order Dynamic Compensation

In this section we obtain necessary conditions that characterize solutions to the optimal fixed-
structure dynamic compensation problem. Unlike previous results, the compensators are allowed

to be nonminimal. We begin by presenting the following key definitions.

Definition 3.1. A compensator (A, B, C.) is an eztremal of the optimal generalized fixed-
order dynamic compensation problem if it satisfies the first order necessary conditions of optimality,

i.e.,
o o 9 _, 0
dA, 9B, = 9C.

where J(A,, B, C.) is defined in (2.7).

Definition 3.2. A compensator (A.. B..C.) is an admissible ertremal of the optimal gener-
alized fixed-order dynamic compensation problem if it is an extremal and is also in S, i.e., the

closed-loop system is asymptotically stable.

Finally, for convenience in stating the main results we define

S 2cTv,'c, © 2 BR;'BT.

Theorem 3.1. Suppose (A¢, B:,C.) is an admissible extremal of the optimal fixed-order
dynamic compensation problem. Then, there exist n X n nonnegative-definite matrices P, Q, P and

Q such that A, B, and C, are given by

Ac=T(A-SP-Q%)GT +Z - P} P,2Q,Q], (3.1a)
B.=TIQCT™V, ' + (I, - PIP)X, (3.1b)
C.= R;'BTPGT + Y (I, — Q2Q1), (3.1¢)

where (G, M, I') is a generalized projective factorization of QP,and X € R™*Y € R™*"™ and

Z € IR™*™ in (3.1) are chosen to satisfly the following constraints:
PAc(In, — P{Py) =0, (3.2)
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QAT (In, — Q20Q)) =0, (3.3)
N(Py) CN(Co), (3.4)
N(Q2) C N(BY). (3.5)

Here, Q, € IR™*™ and P, € IR™ ™ are respectively the closed-loop covariance of the controller

states and its dual and P,Q, P and @ satisfy:

0=ATP+ PA+ R, — PSP+ (R;'BYP - C.I"TRy(R;'BTP - C.I), (3.6)
0=AQ + QAT +V; - QEQ + (QCTV; ! — GTB)V,(QCTV, ! = GTB,)T, (3.7)
0=(A- Q)P+ P(A— QL)+ PSP - (R;'BTP - C.I)"Ro(R;'BTP - C.T'), (3.8)
0=(A-SP)) +Q(A-SP)T +QEQ — (QCTV; ' = GTB)V(QCTV; ! —= GTB,)T. (3.9)

Furthermore, the minimal cost is given by
J(Ac, Be,Ce) = tr[(P + P)V; + PQEQ), (3.10)
or, equivalently,
J(Ac, Be,Ce) = t1[(Q + Q)Ry + QPTP]. (3.11)
Proof. See Appendix A. [J

Remark 3.1. Note that it follows from Lemma 2.2 that if A is asymptotically stable then

conditions (3.2)-(3.5) are automatically satisfied.

Remark 3.2. Note that when P, and @, are full rank, i.e., the controller (A., B.,C,.) is

minimal, the choices of X,Y, and Z have no effect on (4., B.,C.).

Next, we specialize Theorem 3.1 to the case where (A., B¢, C,) is a minimal reduced-order

compensator.

Corollary 3.1. Suppose P; and ¢, in Theorem 3.1 have full rank, i.e., rank P, = rank @, =

n. < n. Then, there exist nonnegative-definite matrices P, Q, P and Q such that A., B. and C, are

given by
A.=T(A- QS - TP)GT, (3.12a)
B.=TIQC*v,7?, (3.12b)
C.= R;'BTPGT, (3.12¢)
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for some projective factorization (G, M, I") of QP and such that the following conditions are satis-

fied:

0=ATP+ PA+ Ry - PSP+ 7] PLPry, (3.13)
0= AQ + QAT + Vi - QSQ + 7.QZQ7], (3.14)
=(A-QE)TP+ P(A- QL)+ PLP — 1] PLPry, (3.15)
0=(A-3SP)Q+Q(A-TP)T +QLQ - 7. QEQ7], (3.16)
rank Q = rank P = rank QP = n., (3.17)
r=(QP)QP)*. (3.18)

Furthermore, the minimal cost is given by
J(Ac, B, Ce) = tr[PVy + Q(PEP — 71 PSPr. )], (3.19)

or, equivalently,

J(Ac, Be,Co) = tr[QRy + P(QEQ — 7.QEQ7T)]. (3.20)

Proof. The proof is a direct consequence of Theorem 3.1. For details see [6]. [

Remark 3.3. Equations (3.13)-(3.18) are the standard optimal projection equations for

reduced-order dynamic compensation given in [6].

Finally, we present a partial converse of the necessary conditions that guarantee closed-loop

stability.

Corollary 3.2. Suppose there exist nonnegative-definite matrices P,Q, P, and Q satisfying
(3.13)-(3.18) and let A., B. and C. be given by (3.12). Then the compensator (A, B.,C.) is an

extremal of the optimal fixed-order dynamic compensation problem. Furthermore the following are

equivalent:
A is asymptotically stable; (3.21)
(A, D) is stabilizable; (3.22)
(A, E) is detectable. (3.23)
In addition,
(A., B.) is controllable if and only if A. + B.CGT is asymptotically stable, (3.24a)
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(Ac, C.) is observable if and only if A + I'BC. is asymptotically stable. (3.24b)

Proof. That the compensator (A, B.,C,) is an extremal follows immediately from the proof
of Theorem 3.1. It follows from the proof of Corollary 3.1 that if nonegative-definite P, @, P and
Q satisfy (3.13)-(3.18) and the compensator (A, B.,C.) is given by (3.12), then (independent of
the stability of A) there exist 7 X # real matrices P and @ satisfying (2.11), (2.12) and having
partitioned forms (2.15), (2.16) with the partitions satisfying

PR=P+P, Q1=Q+0Q, (3.25,b)
Py = —PGT, Q12 =Qr", (3.25¢,d)
P, = GPGT, Q,=rQr" (3.25¢, f)

It then follows that P and @ can be expressed as

P = [}03 g] + [‘GI”] P[-I, GT, (3.26)
§= [‘g 8} + [I;] P, I, (3.27)

and thus
P>0, Q2>0. (3.28)

Obviously (3.21) implies (3.22) and (3.23). Conversely, using (2.11) and (2.12) it follows from
Lemma 12.2 of [19] that (3.22) and (3.23) imply (3.20). Next, it follows from (3.25f) that the (2.2)
block Q, of Q satisfies

Q2 =TQrT > 0. (3.29)

Furthermore, as shown in the proof of Theorem 3.1, @, satisfies
0 = (Ac + B.CGT)Q:2 + Q2(Ac + B.CGT)T + BV, BY. (3.30)

The equivalence (3.24a) then follows from (3.29), (3.30), Theorem 3.6 and Lemma 12.2 of [19]. The
proof of (3.24b) follows in similar fashion by noting that P, = GPGT > 0 and P, satisfies

0= (Ac+ I'BC.)TP, + Py(A. + 'BC.) + CTR,C.. O




4. Optimality Conditions for Full-Order Dynamic Compensation

In this section, we restrict our attention to nth-order compensators. Specifically, we show that

even when the compensator is nonminimal, the generalized fixed-order equations of Theorem 3.1

always yield the standard LQG observer and regulator Riccati equations. We also show that a

corresponding set of mutually coupled equations also exist that are identical in form to standard

optimal projection equations but characterize the same compensator as obtained from the standard

LQG Riccati equations. The proofs of these results rely on the balanced basis described in the

following lemma.

Lemma 4.1. Consider the closed-loop system defined in (2.3). Suppose n, = n and Pand Q

are defined as in (2.36) and (2.37) with

rank P = rank Py = n,, (4.1a)
rank Q = rank Q; = Ng, (4.1b)
and
rank QP = rank Qo P, = n,. (4.1c)
If
PhQ12 + PyQ2 =0, (4.2)
then there exists a nonsingular # X 72 matrix
¢ Sl 0 nxn
S:[O SQ]’ 51,59, € IR xn, (4.3)
such that
E1 On, X(np—n,) On,x(nq—n,) On,xn,
T p _ ¢T _ O(n —n,)Xn, ) 0 0
P = n = 4
S;PS1 =8, PS> oy, 0 0 0 , (4.4a)
On, xn, 0 0 0 '
I:1 On,x(n,,—nr) On,x(nq-n,) On,xm
1A o- - - O(n, - 0
515T25105T= (np=n,)Xn, .
1 @5 7 @253 (rn ) e 0 s 0 (4.40)
Onxn, 0 0 0

—_ r XNy
where n; = n—(n,+n,—n,) and T; € R™ ™",

are diagonal and positive definite.

£, € Rt =) x(me=nn) gy ¢ R(Temnr)x (g =nr)
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Proof. It follows from (4.2) and statement (ii) of Lemma 2.5 that QP and Q, P, have the same
non-zero eigenvalues. Thus using statement (iv) of Lemma 2.4 and the rank conditions specified in

(4.1), yields (4.4a) and (4.4b). O

Below, unless otherwise specified, all the n x n partitioned matrices have the same sub-matrix

dimensions as in (4.4).

Definition 4.1. Suppose the closed-loop system (2.3) satisfies the conditions of Lemma 4.1 and
is transformed via the similarity transformation § given by (4.3) so that the new closed-loop states
are given by #'(t1) = §~'#(t), and hence the transformed plant triple (A’, B',C") and compensator
triple (A%, B!, C!) are given by A’ = §7AS,, B' = S7'B, C' = CS1, and A, = S7'A.S, Bl =
S{lBC, C! = C.S,. Furthermore, let the transformed closed-loop covariance Q' and its dual P’ be

given by Q"= §71Q5-T, P' = STPS, so that

S, 0 00 S 0 0 0

. 0 %, 0 0| 4 0 0 0 0

prop=|0 %00 o= ) ! £ 0 (4.5a.)
0 0 0 0 0 0 0 0

Then the transformation S is called a strictly balanced transformation and the transformed coordi-

nates z' are called strictly balanced coordinates.

Definition 4.2. Suppose the closed-loop system (2.3) is transformed via a similarity trans-
S1 0
0 %

#'(t) = §71E(t). In this case, the transformation $ is called a balanced transformation and the

formation § = [ } , where S7 is as in (4.4) so that the new closed-loop states are given by

transformed coordinates 7' are called balanced coordinates.

Theorem 4.1. Let n. = n. Then there exist n x n nonnegative definite matrices Pr,Qr, Py,
and Q such that an admissible extremal of the full-order dynamic compensation problem is given

by:

Acr = A-SP.-Q.%, (4.6a)
BeL = QLCTV, (4.6b)
CcL = R«;IBTPL, (4.6¢)

where P;, and 1 are the unique, nonnegative definite solutions respectively of

0=ATP,+ PLA+ R, — PLTPy, (4.7)
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0=AQL+QLAT + V1 -QLEQL, (4.8)

and Pp, and QL satisfy

0=(A-QLE)TPL+ PL(A-QLE) + PLTPL, (4.9)
0=(A-3SP)0L+Qu(A-ZP)T+QLEQL. (4.10)

In this case, the minimal cost is given by
J(AC,BC,CC):'LT[PL N+ QLPLLPL], . (4.11)

or, equivalently,

J(Ae, Be,Co) = tr{QLRa + PLQLEQL). . (4.12)

Proof. The proof is constructive in nature and follows from Theorem 3.1 by choosing X =

QLCTV, !, Y = R;'BTPy, and Z = A - QLT — SPy. For details see [14]. [

Remark 4.1. Note that (4.7) and (4.8) are the standard decoupled regulator and observer
Riccati equations and (Acr,Bcr,Ccl) represents the LQG compensator (minimal or nonmini-
mal) obtained through the fixed-structure approach. Furthermore, note that equations (4.9) and
(4.10) are superfluous since the optimal compensator only depends upon the variables P, and QL.
However, using (4.6) it can be easily shown that P, and @ are observability and controllability

Gramians of the compensator [10].

Corollary 4.1. Suppose the compensator obtained in Theorem 4.1 is nonminimal. For con-
venience, let n,g £ rank Qy, np £ rank P and n, 2 rank Q. P;. Then the compensator matrices

in the balanced coordinates, A;,Bgp,Cey, have the following structure:

A’CL,ll A’CL.IZ 0 0
0 0 0 0 .
AL, = , 4.13
CL= | AL g Abpg 00 (4.13a)
0 0 0 0
B'cOL,l
Ber=\p |- (4.13b)
CL,3
0
Cer=1[Cery Ceopa 0 0], (4.13c)

18




where
rXnr oAl r X{np—n, ! —-n,)Xn, 4! (e =Ny ) X{(ny—n,
A/CL,ll e IRn xn ’ACL,IQ e mn (nP n )7 CL31 e IR(nq n ) n ,ACL':}Q E IR.(Tq n ) (TL,, n )’

BICL,I € ]Rn,xI’B/CL,3 € m(nq—n,)xl’

Copy € R™*™,Cop g € R™XP 70,

Proof. The proof is a direct consequence of Theorem 4.1 and relies on transforming the

compensator (4.6) into strictly balanced coordinates. [J

Next, using the balanced transformation presented in Definition 4.1, we show that the input-
output map of the nonminimal LQG compensator given by (4.6) or, equivalently, (4.13) is equivalent
to the input-output map of a specific compensator of Theorem 3.1 with X =0, ¥ =0, Z =0
and n, = n, which we shall call the full-order central compensator or the full-order least-squares
compensator. In this case, as shown in the next theorem, the resulting optimality conditions are

identical in structure to the standard optimal projection equations given by Corollary 3.1.

Theorem 4.2. Let n, = n and let n; represent the order of the minimal realization of the LQG
controller. Suppose rank Q, = rank P, = rank Q2 P> = n,, where Q, € IR"*" and P, € IR"*" are
respectively the closed-loop covariance of the controller states and its dual. Then there exist n x n
nonnegative-definite matrices P, @, P. and Q such that an extremal of the full-order compensation

problem is given by

A, =I'r(A-QE - TP)GE, (4.140)
B, = I'rQCTV; 1, (4.14d)
C.= R;'BTPGE, (4.14c¢)
where P,Q, P, and Q satisfy:
0=ATP+PA+ R, - PSP+ 7. PLPry, (4.15)
0=AQ+ QAT +V, - QEQ + 7.QEQrT, (4.16)
0=(A-Q5) P+ P(A- Q%)+ PTP -7l PPy, (4.17)
0=(A-SP)Q+0(4-SP)T+QSQ - 7.QEQrT, (4.18)
rank Q = rank P = rank QP = N, (4.19)
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T = (QP)(QP)# (4-20)
and (Gp,Mp,IF)is a nt*-order generalized projective factorization of QP. In addition, the cor-

responding cost is given by
J(Ac, Be,C.) = tr[PVy + Q(PEP — 1] PSP7.)), (4.21)

or, equivalently,
J(Ae, B, Ce) = tr[QRy + P(QEQ — 7.QEQ7])). (4.22)

Furthermore, suppose that the compensator is nonminimal, i.e., n; < n, the minimal dimension of
the full-order central compensator is the same as that of the LQG compensator, i.e.. n; = n,. and
that the LQG compensator matrices for this plant in the balanced coordinates are as in (4.13) of
Corollary 4.1. Then, in the balanced coordinates, a central controller triple (AL, Bi. ("() is given

by:

’C'L,ll 0 00
Ac= 8 8 8 8 : (4.230)
0 00 0
ch
(4.230)
it
Co=[Ctr, 0 0 0], (4.23c¢)

, ] ! ] :
where Ay 11, Bep, and Cgyp;y are as in Corollary 4.1.

Proof. The proof is similar to the proof of Theorem 3.1 with n, =nand X = 0.} =0.Z = 0.

Additionally, the compensator (4.23) is a direct consequence of a balanced transformation. O

Remark 4.2. Suppose the full-order compensator is minimal which implies rank Q =rank P
= rank QP = n, or, equivalently, 7 = (QP)(QP)* = I,. Then, (4.15)-(4.18) reduce to (4.7)-
(4.10). Furthermore, it follows from the identity I'r = G}T that (A, B, C,) of (4.14) is simply

some similarity transformation of the LQG controller triple (Acr, Bcr,Ccy) in (4.6).

Remark 4.3. Suppose the LQG compensator is nonminimal. It can easily be shown using the
balanced realizations that the LQG controller (4.13) and the full-order central controller with the
same minimal dimension (4.23) have the same input-output map (but are not equivalent within a
change of basis). Furthermore, they have the same input-output map as an extremal of the optimal

reduced-order compensator problem with n. = n,.
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Next, we prove that the optimal reduced-order controller is also a projection of a full-order
central controller whose minimal dimension is the same as the dimension of the optimal reduced-

order controller.

Theorem 4.3. Suppose n, < n; in Theorem 4.2. Then a nth-order optimal compensator
given by Corollary 3.1 can be attained through a projection p S Q2rPor(QarpPop)¥* of a full-
order central compensator with minimal dimension n., where Q2r and P;r are respectively the

closed-loop covariance of the full-order central controller states and its dual.

Proof. Let n, = n. in Theorem 4.2 and note that (4.15)-(4.20) are identical to (3.13)-(3.18)
which implies that P, Q, P, Q and T are identical for a full-order central compensator and a n'/-order

compensator obtained from Corollary 3.1.

Next, let Q27 and P be respectively the closed-loop covariance of the full-order central con-
troller states and its dual. Since Qsr > 0, Por > 0, and rank Qop = rank Pop = rank QopPor =
ne, it follows from Definition 2.3 and [17] that there exists a projective factorization (TT, M..L,)

with 7, € R™*" L, € IR™*" and M, € IR™*" such that

Q2rPor = T: M, Ly, (4.24)
LT, =1, - (4.25)
p 2 QurPir(QerPor)* = Ty Ly, (4.26)

and p is a n X n projection matrix.

Now it follows from (A.4) and the identities Gr = Q;Q;rz, Mp 2 Q.P,, and I'r = —PJP};,
that
L. TrGET, = L, P} ParQarQl o T (4.27)

Next, noting the property of the projective factorization that R(LY) = R(P;r) and R(T,) =
R(Qar), it follows from property (i) of Lemma 2.1 that LTPJFPQF = L, and QgpQgFTr = T,.
Using (4.25), (4.27) can be rewritten as

L.TpGET, = L. T, = I,_. (4.28)
In addition, using (4.26) and Qop Por(QarPar)¥Qar Por = Q2 Par , vields

T.L, MpT:L, = Q:rPor = MF,
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which implies

GIT, L. MpT,L.TF = GEMpI'r = QP. (4.29)
Thus, it follows from (4.28) and (4.29) that (TY*GF, L MpT,,L.I'r) is a projective factorization
of QP. Hence, using Corollary 3.1, (A, B;,C,) with

A, = L.ITr(A=- QS - TP)GET,, (4.30a)
B, = L. TrQCTV; 1, (4.300)
C, = R;'BT PGTT.. (4.30¢)

is a nt*-order optimal compensator. However, noting (4.14), (4-, B, C;) can also be expressed as
(L ATy, L.B.,C.T,). Thus, it follows from (4.23) and (4.24) that a ni’-order optimal compen-
sator (A, B,C,) can be obtained through the projection y of a full-order central compensator

(A67 BCfCC)' D

The balanced controller reduction method of [10] characterizes the reduced-order controller by
a projection of the LQG controller. For the special case in which the LQG controller is nonmini-
mal and the requested dimension of the reduced-order controller equals the minimal dimension of
the LQG controller, i.e., n, = ny, this method is capable of producing a minimal representation
of the LQG compensator. For this special case, the following theorem explicitly defines the re-
lationships among the projection matrix v used by the suboptimal balanced controller reduction
method, the projection matrix u given by Theorem 4.3 through which a central compensator of
rank n; is projected into a nt*-order optimal compensator and the optimal projection matrix 7 from
standard optimal projection theory. To facilitate the exposition of the following theorem, following
Definitions 4.2 and 4.1, let [SLL 0

denote the balanced transformation of the closed-loop

Sl,c 0 Sl,c

d
0 Sl,c] an [ 0
balanced transformation and strictly balanced transformation of the closed-loop system using the

0 Sic

svstem using the LQG compensator and let [ 50 ] denote respectively the
2.c

appropriate central compensator of rank n;.

Theorem 4.4. Suppose (Acr,Bcr,Ccr) is a nonminimal LQG compensator with minimal
dimension n; and (A, B.,C.) is an appropriate central compensator with rank n,. Let v and
© be n x n projection matrices of rank n; and L,, L, € R™*" and T,, T, € R™™ satisfy
v="TL, pw=7T,L,and L,T, = L,T, = I,. Suppose that (L,AcrT,.L,Bcr.CcrT,) and

(L,A.T,.L,B.,C.T,) are minimal realizations of (Acr.Bcr,CcL). Then
v=T""uT. (4.31)
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where T = 5;252,6. In addition,

y =W\, (4.32)

where W = S;,{Sl,c.

Proof. The LQG compensator triple in balanced coordinate_s, (Agp = S{:,{ACLSLL. By =
S(iBCL, Clp = CcrS1,1) has the expression as in (4.13). Using (4.13), the minimal represen-
tation of the LQG controller in balanced coordinates is (A¢y 11, Beyp 15 Cep ) which implies that

0 0
v'. Thus, using the following identities

v = [I"’ O\ in balanced coordinates and L' =[I,, 0], and T, = [I,, 0]T is a factorization of

Aepn = LLAc T, = L,ST Ac$1..T, = Ly AcLT,,

Bipy=L,Brp = L’US;}LBCL, and C¢p ;= Ce T, = Cer 81T,

vields
L, = LLS;}J, T, = 51T},
and
re—1 Im 0 -1
V= Sl,LV ‘Sl,L: SI,L 0 0 1,L* (4.33)

Next, noting (4.4) and using properties (1) and (iv) of Lemma 2.4, we obtain

v=(QLPLYQLPL)*. (4.34)

Now, according to Remark 4.3, a nt"-order optimal controller obtained from (3.12)-(3.18) has
the same input-output map as the LQG controller whose minimal dimension is n;. Thus, using the

special case, n, = n;, of Theorem 4.3, yields

1= (QurPr)(Q2rPar)¥, (4.35)

where Qo and Py are respectively the closed-loop covariance of the appropriate n;-rank central

controller states and its dual. Now it follows from Definition 4.1 that

I -
w=si |l o] s (4:30)
Finally, following (4.20) and Definition 4.2, yields
3P0 PV# R ELTR -
T = QP(QP) = Sl,c 0 0 Sl,c‘ (431)

Using (4.33). (4.36) and (4.37), vields (4.31) and (4.32). 0O

23




5. Numerical Solution of the Coupled Design Equations and Illustrative Results

One of the principal motivations for the Riccati equation approach to reduced-order dynamic
compensation is the opportunity it provides for developing efficient computational algorithms for
control design. In particular, the goal has been to develop numerical] methods which exploit the
structure of the Riccati equations. It turns out however, that methods for solving standard Riccati
equations cannot account for the additional terms appearing in the modified equations of Theorem
3.1 and Corollary 3.1. Therefore, a new class of numerical algorithms has recently been developed
based upon homotopic continuation methods. These methods operate by first replacing the orig-
inal problem by a simpler problem with a known solution. Specifically, the simpler problem can
be chosen to correspond to a low authority full-order LQG control problem. As shown in [20],
if the weighting matrices are chosen properly, then in this case the LQG compensator is nearly
nonminimal. Hence, using a simple balanced controller reduction technique [10]. the resulting bal-
anced reduced-order controller serves as a good approximation to the optimal projection controller
corresponding to the simpler problem. The desired solution is then reached by integrating along a
path which connects the starting problem to the original problem. These ideas have been recently

illustrated for the reduced-order control problem in [13, 14].

Using the homotopy algorithm appearing in [13] we demonstrate the utility of the H, optimal
reduced-order controller design framework discussed in this paper on the four-disk axial beam
problem shown in Figure 5.1. This example was derived from a laboratory experiment [21] and has
been considered in several subsequent publications (e.g., [22-24]). The 8!-order state space model,
problem data, and design weights are given in the above references. The basic control objective for
the four-disk problem is to control the angular displacement at the location of disk 1 using a.torque
input at the location of disk 3. It is also assumed that a torque disturbance enters the system at

the location of disk 3.

The design philosophy adopted here is that the scaling ¢, of the nominal control weight Ry o = 1
and the nominal sensor noise intensity V; o = 1, where the subscript “0” denotes initial values, are
simply “design knobs” used to determine the control authority. Hence, Ry(A) = g2(A)Rao and
Va(A) = ¢2(A)Va,0, where X is a homotopy parameter and A € [0,1]. Here, we consider the design

of 274 4tk and 6t -order controllers for various authority levels.

Since at g, = 10, the 2"¢, 4! and 6" balanced reduced-order controllers are all good approxi-

mations of the corresponding reduced-order optimal controllers, we use these suboptimal controllers
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to initialize the homotopy algorithm and deform the controllers into the higher authority optimal
controllers corresponding to g, = 1. In each of the following passes, we increase the authority level
by decreasing R, and V; by a factor of 10, i.e., g2 next = 0.1¢2,0, and at the end of each pass de-
form the initial optimal controllers to the optimal controllers corresponding to the higher authority
level. This process is repeated for every reduced-order design. Figure 5.2 compares the o.ptimal
controllers of various orders. This type of figure can be used in practice to determine the order of

the controller to be implemented.

The Frobenius norms of P, @, P, and () are also recorded along the homotopy path and typical
results are shown in Figure 5.3 of || P||r for the 4t"-order controller design. It is interesting to
note that as the control authority is increased beyond a certain level (e.g., for n, = 4,¢2 < 1074)
those values approach some stable limit as indicated in this figure. This is because P, Q, P and O
converge to fixed values as the control authority increases. It follows that the optimal reduced-order

controller converges to a fixed value.
6. Conclusion

Necessary conditions for fixed-structure H, optimal control were derived without assuming
compensator minimality. These necessary conditions are characterized in terms of coupled Riccati
and Lyapunov equations which reduce to the optimal projection equations [6] when the compensator
is minimal. The standard LQG Riccati equations can also be derived when the optimality conditions
are specialized to the full-order case. Furthermore, it is shown for the first time that a reduced-order
optimal projection controller is a projection of a “central” extremal of the corresponding full-order
compensation problem. For nonminimal LQG compensators, balanced controller reduction method
is able to produce a minimal-order realization of the LQG compensator. For this special case, the
relationships between the projection matrix used by balanced controller reduction, the projection
matrix through which an appropriate central controller is projected into a reduced-order optimal
controller whose dimension is the same as the minimal dimension of the LQG controller, and the
optimal projection matrix from the standard optimal projection theory are explicitly defined. A
continuation algorithm that exploits the Riccati-equation design framework is discussed and its

utility for controller synthesis is illustrated using a representative problem in structural control.




Appendix A. Proof of Theorem 3.1

To optimize (2.14) over the open set S, subject to the constraint (2.11), form the Lagrangian

L(Ac, Be, Ces @, P,3) 2 uMQR + (AQ + QAT + V)P), (4.1)

where the Lagrange multipliers A > 0 and P € IR™ ™ are not both zero. We thus obtain

9‘4_:__“' - . -
00 '

Setting 8L£/0Q = 0 yields

or, equivalently,

(AT @ AT) vec P = ~) vec R, (A.2)

where @& denotes the Kronecker sum and “vec” is the column-stacking operation defined in [25].
Since A is assumed to be asymptotically stable, (/iT & AT) is invertible, and thus A = 0 implies
P = 0. Hence, it can be assumed without loss of generality that A = 1, which yields (2.12).

Furthermore, with A = 1, (A.2) is equivalent to
P = —vec™ (AT @ AT)"'vec R).
To prove that P is nonnegative definite, we rewrite the above expression as
oo
- T . =T -
P= /vec__l[e(A &4 Mvec R] dt, (A.3)
0
and show that the integrand is nonnegative definite for all ¢ € [0, c0). For convenience, let S and

N be n x n matrices with N > 0. Since (see [25])

eS@S — 65 ® eS’

and
vec (S ® S)vec N] = SNST >0,
where ® denotes the Ironecker product defined in [25]. it follows that
vec™ eS8Svec N] = vec (e @ €% )vec N]= eSNeST > 0.
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Noting R is nonnegative definite and applying the above expression with (A.3) it follows that the

integrand of (A.3) is nonnegative definite. Thus P is nonnegative definite.

Now partition 72 X 7 P,Q into n X n,n X ng, and n. X n, subblocks as in (2.16) and (2.15),

respectively. The stationary conditions, with A =1, are then given by

oL
A P;%Qw + P,Q2 =0, (A.4)
oL
55 = PBeVa+ (PLQ1 + PQL)CT =0, (A.5)
L .
% ~RyCcQ2 + B (P1Q12 + P12Q2) = 0. (A.6)

Expanding (2.11) and (2.12) yields (2.17)-(2.22). Since A is assumed to be asymptotically stable,
using (2.28b) and (2.292) of Lemma 2.3 we can rewrite (A.4) as

Py(I,, + P} PLQ12Q1)Q2 = 0. (A.7)

Next, define the n x n matrices

P2 P —P,PIPL, Q2Q:-0QiQL. (A.8a,b)
P& PLPIPL, Q2 01.QiQ%, (A.9a,b)

and n, X n,ne X N, and n, X n matrices
G2Q1QY,, M2Q,p,, I'2-P/PL. (A.10a,b,¢)

Note that the definitions of P,Q,G, M and I' in (A.9) and (A.10) are identical to the ones defined in
(2.41)-(2.45) of Lemma 2.5. Furthermore, noting that (A.4) is equivalent to (2.46), it follows from
the property (i) of Lemma 2.5 that (G, M, I') satisfies property (v) of Lemma 2.4, or. equivalently,
(G,M,T) is a generalized projective factorization of QP Clearly, P,Q, P and Q are symmetric
and P and Q are nonnegative-definite. To show that P and Q are also nonnegative definite, note

that P is the upper left-hand block of the nonnegative-definite matrix PPPT, where

pol In —«PIQP;‘]

Onc Xn Inc
Similarly, Q is nonnegative definite. Next, using the properties of the Moore-Penrose generalized

inverse, it is helpful to note the following identities from the definitions (A.8)-(A.10):

P=-Por=-I"PL=1"Pr, (A.11a)
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0 = Q1:G =GTQY, = GTQ\G, (A.11b)

and
P=P-P, Q=0,-0. (A.12a.b)

In addition, using (2.23) and (2.24) yields
PL =—-PI, Ph=-TI7TP,. (A.13)
Q% = Q2G, Q12 =G*Qa. (A.14)
Furthermore, it follows from (A.2) that
QP = —Qu P (A.15)
Next, using (A.13), we can rewrite (A.7) as
Py(In, = I'GT)Q2 = 0. (A.16)
Forming PlngT(AA) and using (A.9a) and (2.28a) of Lemma 2.3, yields
PQi2 + P12Qy = 0. (A.17)
Similarly, computing (A.4)Q;CQIT2 and using (A.9b) and (2.29b) of Lemma 2.3, yields
PLO + PQL, = 0. (A.18)

Using the identities (A.18) and (A.12a) we can rewrite (A.5) as P,B.Va + PSLQCT = 0. Noting
that V, is invertible and using (A.13) yields Py(B. — T'QCTV,™!) = 0, which further implies

B.=TIQCTV, ' + (I, - PiP)X, (A.19)

where X € IR™*! is an arbitrary matrix. Similarly, using (A.17) and (A.12b) we can rewrite
(A.6) as —R,C.Q, + BYPQ12 = 0. Noting that R, is invertible and using (A.14), yields (C. —
R;7'BTPGT)Q, = 0, which further implies

Ce= R;'BTPGT + Y (I, — Q2Q1), (A.20)

where ¥ € IR™*™ is an arbitrary matrix. Next, computing either (2.21)TQ1o +(2.22)Q» and using

(A.4) and (A.6) or PL(2.18)+ P»(2.19) and using (A.4) and (A.5), yields

PyA.Qy + PLAQ s + PyB.CQra — PLBC.Q, = 0.
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Noting (A.13) and (A.14), the above equation is equivalent to
Py(A. - T'AGT + B.CG™ + I'BC.)Q, = 0. (A.21)

Using identities (A.19) and (A.20) and noting the properties of the Moore-Penrose generalized
inverse, (2.23) and (2.24), (A.21) can be rewritten as:

Py[A.— (A -TP-QE)GT)Q: =0, (A.22)
which further implies
A.=T(A-SP-QS)GT + Z - P} P,2Q-Q1, (A.23)

where Z € IR *"¢ is arbitrary.

However, it follows from properties (i), (i), (v) and (vi) of Lemma 2.2, X, Y and Z must be
chosen such that the compensator triple (A, Be, C.) satisfies (3.4), (3.5), N(P,) = the unobserv-
able subspace of (A, C.), and M(Q2) = the uncontrollable subspace of (Ac, B.), to assure the

closed-loop system stability.

Furthermore, since P; and @ do not necessarily have full rank and N(P;) C N(P;z) and
N(Q2) C N(Q;2), we may introduce additional singularities during the derivation for the expression

of A,. The extra singularities can be eliminated by examining the conditions under which the

“original Lyapunov equations (2.17)-(2.22) are satisfied. Since A, is not involved in (2.17) and

(2.20), only (2.18), (2.19), (2.21) and (2.22) have to be checked. Using (2.28) and (2.30), (2.21)
can be rewritten as

Py A+ (AP + CTBI P, — PBC.)PI P, = 0.
Using (2.21) the above equation can be reduced to P12 A; — P12ACPJP2 = 0, or, equivalently,
P Al - PlP) =0. (A.24)

Similarly, using (2.28) and (2.30), (2.22) can be reduced to (3.2). Next, using (2.29) and (2.31),
(2.18) and (2.19) can be reduced to

Q12 AT(I - Q1Q2) = 0. (A.25)

and (3.3), respectively. Using the property N'(P.) C N(Py2), (3.2) implies (A.24). Similarly, with
N(Qq) C N(Q12). (3.3) implies (A.25). Furthermore, note that (3.2) and (3.3) also satisfy the
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necessary conditions for A to be asvmptotically stable as stated in Lemma 2.2. Thus X, Y and Z

in (3.1) must be chosen such that A, B and C. satisfy (3.2)-(3.5).
Computing (2.20) + (2.21)I" + I''(2.21)T and usiﬁg (A.11a), (A.12a) and (A.13), yields
0= ATP+PA+R, - PBC.I ~I'"CTBTP-T'T(ATP,+ P,A. - PLBC.~CI BT Py;)I. (A.26)
Using (2.22) to eliminate the terms in the parenthesis, (A.26) is equivalent to
0=ATP+ PA+ R, - PBC.I - I'T'CTBTP + I'"CIR,C.T. (A.27)
Forming (A.27) + PEP — PP, and noting
(R;'BTP - C.I'\"Ry(R;'B"P - C.I') = ~PBC.I' = IT'"C}B" P+ IT'"C] R,C. T + PEP,

yields (3.6). Next, computing (2.20) — (3.6), using (A.12a) and noting the identity P1;B.C =
~I'"P,B.C = —PQS, we obtain (3.8). Similarly, computing (2.17) — (2.18)G - G7(2.18)T and
using (A.11b), (A.12b) and (A.14) yields

0= AQ+QAT+Vi—QCTBIG - GTB.CQ~GT(AQ2+Q2AT + B.CQ12+QL,CTBE)G. (A.28)
Using (2.19) to eliminate the terms in the parenthesis, (A.28) is equivalent to
0=AQ +QAT +V; —QCTBIG - G*B.CQ + GTB.V, Bl G. (A.29)
Forming (4.29) + QEQ — QEQ and noting
(QCTV, Y = GTB)V(QCTV, ! = GTB.)T = —-QCTBIG - GTB.CQ + GTBJ@B}“G +QLQ,

yields (3.7). Next, computing (2.17) — (3.7), using (A.12b) and noting the identity Q1:CIBT =
GTQ,CTBT = QPE, we can obtain (3.9).

Finally, to prove (3.10), using (2.16) and (2.9), (2.14) becomes
J(A¢, Be,Co) = tr P,Vy + tr PyB.V,B!. (A.30)

Next, noting the identity tr P,B.VyBT = tr VchTPg B., and using (3.1b) and the fact that (I —
P,P})P, = P(I - P/ P,) = 0, yields tr P, BV, B = tr CQI'TP,IQCTVy". Thus, using (A.11a),

the above expression can be reduced to
tr PyB.VaBY = tr CQPQCTV,! = tr PQCTV,1CQ = tr PQEQ. (A.31)

Furthermore, using (A.31) and (A.12a), (A.30) is equivalent to (3.10). Similarly, using the dual
approach and noting that J(A., B.,C.) = tr QR vields (3.11). O
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Abstract

It has been observed numerically that suboptimal

controller reduction methods tend to work well when
applied to low authority LQG controllers. However, to
date. a rigorous justification for this phenomena has not
been established. This paper shows that for continuous-
time stable systems, by proper choice of the structure
of the design weights, the corresponding LQG compen-
sator becomes nonminimal as the control authority is
decreased. An example illustrates that the near non-
minimality of the LQG compensator can result in near
optimality of the corresponding controller obtained by
suboptimal controller reduction.

1. Introduction

The development of linear-quadratic-gaussian (LQG)
theory was a major breakthrough in modern control the-
ory since it provides a systematic way to synthesize high
performance controllers for nominal models of complex,
multi-input multi-output systems. However. one of the
well known deficiencies of an LQG compensator is that
its minimal dimension is usually equal to the dimension
of the design plant. This has led to the development of
techniques to synthesize reduced-order approximations
of the optimal full-order compensator (i.e., controller re-
duction methods) [1-6].

The controller reduction methods almost always
vield suboptimal (and sometimes destabilizing) reduced-
order control laws since an optimal reduced-order con-
troller is not usually a direct function of the parameters
used to compute or describe the optimal full-order con-
troller. Nevertheless. these methods are computation-
ally inexpensive and sometimes do vield high performing
and even nearly optimal control laws. An observation
that holds true about most of these methods is that they
tend to work best at low control authority 4. 6]. How-
ever. to date no rigorous explanation has been presented
to explain this phenomenon.

This paper provides a constructive way of choosing
the weights in a LQG control problem of dimension n
such that for a given n, < n the corresponding n'h-order
controller obtained by a suboptimal reduction method is
guaranteed to have essentially the same performance as
the LQG controller at low control authority. Although
the guarantee is for a low authority control problem. it
is expected that. as the control authority is increased
by scaling the appropriate weights. suboptimal reduc-
tion methods will perform better than they would with
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Georgia Institute of Technology
Atlanta, GA 30332-0150
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wassim.haddad@aerospace.gatech.edu
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is shown that if the state weighting matrix R; or dis-
turbance intensity V) has a specific structure in a basis
in which the A matrix is upper or lower block triangu-
lar. respectively, then at low control authority the corre-
sponding LQG compensator is nearly nonminimal with
minimal dimension n,. It follows that the LQG com-
pensator can be easily reduced to a n‘fh-order controller
having nearly the same performance.

A special case of the conditions presented for R,
and V; has a strong physical interpretation for structural
control problems. In particular. assume that all of the
eigenvalues in the plant are complex and that n, is an
even number. Then, either R; is allowed to weight only
n./2 modes or V) is allowed to disturb only n./2 modes.

Notation
R.IR"**. IR real numbers. r x s real matrices, R

[E expected value

XN>0 matrix X is nonnegative definite
X>0 matrix X is positive definite

Orxs.0r r X § Z€ro matrix. r X r zero matrix

I, r x r identity matrix

vec(-) the invertible linear operator defined as

vec $ = [sT sT .. sIIT, S e RP™Y,
where s; € IR? is the j** column of S.

2. Low Authority LQG Compensation
Consider the n**-order linear time-invariant plant
o{t) = Az(t) + Bu(t) + Dyw(t), (2.1a)
y(t) = Cz(t) + Daw(t), (2.1b)
where (4, B) is stabilizable, (A.C) is detectable, » €

R".ue R™,ye IR and w € R is a standard white
noise disturbance with intensity Iy and rank D» = [
The intensities of Djw(t) and Dow(t) are thus given,

respectively. by V4 £ D, DT > 0. and V- £ DaDI > 0.

For convenience, we assume that Vi, = D,D’-_,rvz 0.
i.e.. the plant disturbance and measurement noise are
uncorrelated. Then, the LQG compensator

L (t)= Aclc(t)'*’ch(t)w (2.2a)
u(t) = =C.z.(t). {2.2b)

for the plant (2.1) minimizing the steady-state quadratic
performance criterion

t
1
J(A..B..C.) £ lim '-IE/[IT(S)Rl.L'(S)+UT(S)R'_3U(S)]([S<
another set of weights. t—oo { J

The discussion here focuses on stable systems. It
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where R, > 0 and R, > 0 are the weighting ma-

trices for the controlled states and controller input. re-
spectively. is given by:

4, =4-SP-Q%. (24a)

B.=QCTv,'. C.=Ry'BTP.  (24b.c)

where © 2 BR;'BT. £ 2 ("T\;7'C and P and Q are
the unique. nonnegative-definite solutions respectively
of

0=ATP+PA+ R, - PSP, (2.5)
0=A4Q + QAT +17 - QEQ. (2.6)

Furthermore. the “shifted” observability and qontrolla—

bility gramians [1] of the compensator, P and Q, are the
unique. nonnegative-definite solutions respectively of

(A-QE)TP+ P(A-QS)+ PEP,  (2.7)

0
0=(4-SP)Q+Q(A-SP)T+QQ. (28)

Although a cross-weighting term of the form 2:T(t)R1»
u(t) can also be included in (2.3), we shall not do so
here to facilitate the presentation. The magnitudes of
R» and V5 relative to the state weighting matrix R, and
plant disturbance intensity V7 govern the regulator and
estimator authorities. respectively. The selection of R,
and Va such that ||Rol >> [|Rul, or [[Va]l >> [Vl
vields a low authority compensator. This section shows
that when the open-loop plant is stable and (A, Ry) or
(4. V1) have a particular structure. the LQG controller
approaches nonminimality as the controller authority
decreases. In order to prove this result, we first exploit
some interesting structural properties of the solutions of
the Riccati equations and Lyapunov equations assuming
the coefficient matrix A and the constant driving term
R, have certain partitioned forms.

Lemma 2.1. Suppose

LA 0 B Ry 0
'1‘[_431 Ag]' B_[Bq}‘ R‘”[ 0 on_n,]‘

{2.9a.b,¢)
where A, R, € R*™*"*, B, € R"™*™, Ry, >0.

(1) If both (A, B) and (A;.B;) are stabilizable,
then the unique, nonnegative-definite solution
of the Riccati equation:

0=ATP+PA+ R, - PBBTP, (2.10)

is given by

_ | A 0 .
P_[O 0n_n,]‘ (2.11)

where the n, x n, matrix Py is the unique,
positive-definite solution of

0= ATP + P A+ R, — PB Bl P,. (2.12)

(1) If A is asymptotically stable, then the unique.
nonnegative-definite solution of the Lyapunov

equation:
0=ATP+ P4+ R, (2.13)
is given by
1A 0
P= [ 0 On-n,] , (2.14)

where the n, x n, matrix P; is the unique.
positive-definite solution of

0=ATP + PilAl + Ry . (2.15)

Proof.

(i) Since (4, B) is stabilizable and Ry > 0, it fol-
lows from Theorem 12.2 of [7] that there exists a
unique, nonnegative-definite solution of the Ric-
cati equation (2.10). Similarly, the assumptions
that (A, By) is stabilizable and Ry ; > 0 im-
ply that there exists a positive-definite matrix
P, satisfying the Riccati equation (2.12). Using
(2.12), it follows by construction that (2.11) is
the solution of (2.10).

(if) This is a special case of the Riccati equation of
property (1). 0O

The following lemma states the dual of Lemma 2.1

if the coefficient matrix A is upper block triangular and
Vi is upper block diagonal.

Lemma 2.2. Suppose

_ .41 Ax'_) _ .- V1_1 0
A—[O Ag])c_{cl C?]v ‘/l—[o On—n,:|.

(2.16a.b,¢)
where A4;,Vi; € R* ", C; € R™ " Vy, > 0.

(i) If (A,C) and (A;,C,) are detectable. then the
unique, nonnegative-definite solution of the fol-
lowing Riccati equation:

0= AQ+ QAT+ Vi —-QCTCQ. (2.17)

is given by

_1Q 0
Q= [ A On_m]. (2.18)

where the n. x n, matrix @ is the unique,
positive-definite solution of

0=AQ+Q1AT + V1, -Q,CTC1Q:1. (2.19)

(i) If A is asymptotically stable, then the unique,
nonnegative-definite solution of the Lyapunov
equation:

0=AQ+QAT + V), (2.20)
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o AT

is given by
N 1@ 0 5 -
Q= [ 0 Owon. | (2.21)

where the n, x n, matrix @ is the unique.
positive-definite solution of

U=.~‘1(21+Ql:11+‘-1.1. (2.22)

Proof. The proof is dual to the proof of
Lemma?2.l. O

The following theorem proves that with proper
choice of the weighting matrices, a low authority LQG
controller for a stable plant is nearly nonminimal. The
proof of this theorem relies on the above two lemmas.

Theorem 2.1. Consider the plant given by (2.1).

(1) Suppose

_ Al 0 _ R1_1 0
A= [-‘hx A?} = [ 0 On—-nr].

(2.23a.b)
where 4, . R ; € R"™*", Ry; >0.and A is

asymptotically stable. Let

113

Vo 2 315 (2.24)

where 15 is some finite, positive-definite matrix
and J € IR is a positive scalar. Then for any
& > 0. there exists N such that for all 3 > N,

(An,41/2n,) <& (2.25)
where ); represents the i*® eigenvalue of QP.

/\1 _>_ /\2 2 _>_ /\,’ 2 /\,‘+1... 2 0, and Q and P
are the shifted controllability and observability
gramians of the corresponding LQG compen-
sator, satisfving (2.8) and (2.7), respectively.

(11) Suppose

1= .‘\1 ."11'3 1 = Vl,l 0
TTL0 AT PT 0 Opon, |

) (2.26a.b)
where 4;.V1, € R" ™", 117 > 0. and A is

asymptotically stable. Let
(2.27)

where Ra is some finite. positive-definite matrix
and a € IR is a positive scalar. Then for any
6 > 0, there exists N such that for all a > V.

('\n,+l//\n,.) < 8, (2.28)

where ), represents the it eigenvalue of QP
and t\l 2 /\'3 Z 2 z\,‘ Z AH.[‘.. 2 0. and
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Q and P are the shifted controllability and ob-
servability gramians of the corresponding LQG
compensator. satisfving (2.8) and (2.7). respec-
tively.

Proof.
v,
(i) Partition B = [g,"] and © = {v, 2‘-}.

conformal to A in (2.23). The assumptions
(2.23) and that A is asymptotically stable imply
that (4. B) and (4. B;) are both stabilizable
Thus. it follows from property (1) of Lemma 2.1
that the unique, nonnegative-definite solution P
of the Riccati equation (2.5) has the structure
given by (2.11), which implies that

(2.29)

PSP = [P‘S‘P‘ 0] .

0 0

Thus. noting the special partitioned structures
in (2.29) and (2.23), and that 4 is asymptot-
ically stable, it follows from property (u) of
Lemma 2.1 that there exists

Poé[’;‘ 0 0 } (2.30)

which is the unique, nonnegative-definite solu-
tion of

0=ATPy+ PyA+ PSP, (2.31)
where n, x n, matrix Pl 1s the unique. nonneg-
ative definite solution of 0 = AT P, + P A, + P,
¥, P,. Next, computing (2.31) — (2.7) and using
(2.24), yields the following modified Lyapunov
equation:

0= ATAP + APA+ 37 (EeQP) + (20QP)T)
(2.32)

{2.33a)
(2.33h)

where £o 2 CTV;71C.
~ A

APZ2 Py - P.

Since 4 is asymptotically stable and @ and P
satisfy (2.6) and (2.7), respectively. @ and P

are bounded for all 3. Next. we rewrite (2.33b)
as

P=Py- 37" AP (2.34)
where _\Po_ is the solution of 0 = ATAP, +
APyd + (SoQP + (So@P)T). _z\"o“x rewriting
(28) as 0 = (A = EP)Q + Q(A - cpT +
I-'QoQ, it follows that
Q= 3"'Qo.

(2.35)



where Qg satisfies 0 = (.4 - TP)Qo + Qo(4 —
CP)T 4+ QT6Q. Next. using (2.34) and (2.35).
we obtain (for large J)
$ 2P = ITNs 3718,
T - .5—25'_)1 J"".S"_) '

where 5| € [R""*"" S, € [R"™" "= and
Sy is nonsingular. Note that since Q and P
are nonnegative-definite, S is semisimple and
the eigenvalues of S are real and nonnegative.
Hence. the eigenvalue ratio of S is the same as
the corresponding eigenvalue ratio of .35, Next.

define
or & Sl ‘91:'
52 [0 ! ]

and recognize that limz_. 35 = S'. Noting
that the eigenvalues of S are the collection of
n; eigenvalues of Sy plus (n ~ n,) zero eigenval-
ues, and since the eigenvalues of a matrix are
continuous with respect to the parameters of
the matrix. it follows that for any ¢ > 0. there
exists N such that for all 3 > N. As,i—€<
Assi < As,i+efori=1,.. n. and Asgsi < €.
fori=mn.+1....n and As5, and As, i represent
the i** eigenvalue of 3S and 51, respectively. in
descending order. Hence. it follows that for any
¢ > 0. there exists .V such that for all 3 > A,

A<inp41 < 6

S.np

(1) The proof is dual to the proof of (1). O

Remark 2.1. Theorem 2.1 provides two ways of
weighting matrices selection resulting in a nearly non-
minimal. low authority LQG compensator for a stable
plant. The first approach starts by transforming the
plant A into coordinates such that 4 has the represen-
tation as in equation (2.23a) after transformation. Then
select the weighting matrix R; with the partitioned form
as in (2.23h) and with rank R, = n,. By decreasing the
authority of the compensator. or, equivalently, increas-

ing |[V2j] or 3. the eigenvalue ratio. A/'\"*’ of the LQG

compensator decreases and the LQG compensator ap-
proaches nonminimality with minimal dimension of n,.
Using a dual approach. with A and V1 partitioned as in
(2.26). by increasing || Rs|| or a, the resulting LQG com-
pensator approaches nonminimality. However. in the
limiting case. as a — > or 3 — ~ then it follows from

(2.7) and (2.8) that P — 0 and Q — 0. respectively.

Remark 2.2. Note that if A is in a modal form,
then it satisfies both {2.23a) and (2.26a) of Theorem
2.1. In this case. R, given by (2.23b). describes a state
weighting matrix in which only the states pertaining
to selected modes are weighted. Similarly. 1) given by
(2.26b) describes a disturbance that excites only certain

modes. It is not uncommon for these conditions 1o be
satisfied or nearly satisfied in practice.

. Remark 2.3. The continnous-time results stated
in Lemma 2.1, 2.2 and Theorem 2.1 are readily extended

to their discrete-time counterparts as shown in [3].

3. Numerical Illustrative Examples

To illustrate the proper choices of the weighting ma-
trices resulting in a nearly nonminimal. low authority
LQG compensator for a stable continuous-timne plant.
consider a simply supported heam with two collocated
sensor/actuator pairs. Assunung the beam has length 2
and that the sensor/actnator pairs are placed at coor-
dinates a = ’%_, and b = % a continious-time model
(2.1) retaining the first five modes is obtained with

1 0 1
-0l "{~16 —-.04|"

0 1 0 ] 0 1 )
-8l —.09}"|-256 ~-.16]'|-625 —.95!|"

A = block-diag| [ 2

0 0 1
—0.2174  —0.8439
0 ()
0.4245  —0.9054
oo 0 .
B=1_o6112 —o.127 C=8
0 0
0.7686  0.7686
0 0
[ ~0.8803  0.9522

The noise intensities are 1, 2 D, DT = 0.1,y and 15
D2DI = 31, and it is assumed that Via 2 D\ DT = 0.
The design objective is to minimize the continuous-time
cost J = limy—~ [E[.rTRl.r + uTRgu]. where Ry = al,.
Note that the magnitude of the positive real numbers
a and J are the indicators of the controller author-
ity level. For this particular plant, 4 has the repre-
sentation as in (2.23a) and (2.26a) with 4,2 = 0 and
421 = 0, respectively. Here. we illustrate the results
of property () of Theorem 2.1 for the cases of n. = 2
and n, = 6. Setting @ = 0.1, by selecting the weighting
I.. 0
0 0

creasing the compensator authority), the resulting LQG

compensator approaches nonminimality with minimal
. . . An 2P

dimension of n, or. equivalently. LLITIILA R 0 where

An lQP)

A, is the sorted (in descending order) i‘* eigenvalue of

QP. Figure 1 shows the ratio curve for n, = 2 with
J € (0.01.0.1,1.16,10% 10% 10%. 10°. 10%). The curve
clearly indicates that the ratio decreases as 3 increases.
To illustrate that suboptimal controlier reduction meth-
ods yield nearly optimal reduced-order compensators for
low authority control problem:s. Figure 1 also shows
the norm of the cost gradient of the 2"9.order con-
troller obtained by balancing. The cost gradient is de-
fined as [(vec -;l_‘—)T (vec 5"-J—)T (vec %)T]TA The
cost gradient curve indicates the balanced ¢ontroller ap-
proaches the optimal reduced-order compensator as J
increases. or as the control authority decreases. Figure
2 shows the eigenvalue ratio of the LQG controller for
nr =6 and the norm of the cost gradient of the corre.
sponding 6'"-order balanced controller.

matrix £, = :, . and increasing 3 (hence. de-
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Conversely. if the weighting term Ry for the above
example does not have the structure given by (2.23b).
decreasing the controller authority (i.e.. increasing J)
may not viek! a nearly nonminimal LQG compensator.
As an apparent consequence. the norm of the cost gra-
dient of the corresponding 2"%-order balanced controller
does not approach zero as the control authority de-
creases. This is illustrated in Figure 3 for n. = 2 and
R, = liy. Note that for this particular example, at
3= 0.01 the balanced controller destabilizes the closed-
loop system and hence the norm of the cost gradient
becomes infinite.

4. Conclusion

By exploiting structural properties of the solutions
of the Riccati equations and Lyapunov equations. this
paper shows that for continuous-time stable systems,
if the coefficient matrix 4 and driving weighting term
Ry (or Vi) have specific structures, the corresponding
LQG compensator becomes nonminimal as the coatrol
authority is decreased. As illustrated by the example,
this near nonminimality can result in near optimality
of a controller obtained by suboptimal controller reduc-
tion. Conversely, the example shows that if the structure
of the weighting matrices do not satisfy the conditions
specified in Theorem 2.1. the resulting LQG compen-
sator is not necessarily nearly minimal even at low con-
trol authority. In this case. reduced-order controllers
obtained by suboptimal projection methods may not be
nearly optimal even at low authority.
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Abstract

Homotopy approaches have previously been developed for synthesizing H, optimal reduced-
order models. Some of the previous homotopy algorithms were based on directly solving the optimal
projection equations, a set of two Lyapunov equations mutually coupled by a nonlinear term involv-
ing a projection matrix 7, that characterize the optimal reduced-order model. These algorithms are
numerically robust but suffer from the curse of large dimensionality. Subsequently, gradient-based
homotopy algorithms were developed. To make these algorithms efficient and to eliminate singular-
ities along the homotopy path, the basis of the reduced-order model was constrained to a minimal
parameterization. However, the resultant homotopy algorithms sometimes experienced numerical
ill-conditioning or failure due to the minimal parameterization constraint. This paper presents a
new homotopy approach to solve the optimal projection equations for Ho model reduction. The
current algorithm avoids the large dimensionality of the previous approaches by efficiently solving
a pair of Lyapunov equations coupled by low rank linear operators.
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1. Introduction

The continued and pressing need for more accuracy in mathematical modeling of physical pro-
cesses has led to increasingly high-dimensional models. In order to simplify computer simulations
and the design process for feedback compensation, many model reduction schemes have been pre-
sented during the last two decades. Among these is the quadratically optimal (or H; optimal)
model reduction problem. This optimization problem involves determining a reduced-order model
of fixed dimension whose outputs approximate the outputs of the original model in a least squares
sense. The associated necessary conditions were studied by Wilson in (1970, 1974). Significant sim-
plification of Wilson’s results were achieved by recognition and exploitation of an oblique projection
matrix by Hyland and Bernstein (1985). The resulting necessary conditions of optimality are char-
acterized by “optimal projection equations” which consist of a pair of n X n modified Lyapunov

equations that are mutually coupled by nonlinear terms involving a projection matrix 7.

The optimal H; model order reduction problem is essentially a “younger brother” of the more
important problem of optimal H; reduced-order controller design. For example, the optimal pro-
Jjection equations for reduced-order modelling are a subset of the optimal projection equations for
reduced-order control developed by Hyland and Bernstein (1984). Hence, an important reason for
investigating numerical solutions to the model reduction problem is to provide an intermediate step

in the development of numerical solutions to the reduced-order control problem.

Several approaches have been considered to synthesize H, optimal reduced order models. Based
on the first-order necessary condition of optimality, Wilson (1970, 1974) and Hirzinger and Kreis-
selmeier (1975) presented approaches which implemented the Fletcher-Powell gradient algorithm
to minimize the cost over the reduced-order model parameters for a multi-input, multi-output
(MIMO) system. Aplevich (1973) and Mishra and Wilson (1980) proposed' similar approaches
based on the steepest descent algorithm. Using the pole-residue form of the transfer function.
Bryson and Carrier (1990) obtained analytical expressions for the first and second order derivatives
of the cost function and proposed a Newton-Raphson algorithm for the optimal model reduction
of a single-input, single-output (SISO) system. By reformulating the cost function for a SISO
system and exploiting its relationship with the coefficients of the transfer function. Spanos et al.
(1990) developed a two-step gradient-descent algorithm to alternately optimize the numerator and
denominator coefficients of the transfer function of the reduced-order model and this algorithm was

proved to be globally convergent.



Recently, several homotopy algorithms were developed for the H, optimal model reduction
problem. There are at least three reasons for considering homotopy or continuation methods for
optimization problems arising in engineering applications. First of all, it is often desired to find
solutions for various values of some set of parameters describing the problem. These parameters
can determine the description of the nominal plant, the input authority (in control problems), the
amount of system uncertainty, etc... Homotopy methods can be much more efficient in generating
these sets of solutions than alternative methods due to the use of prediction steps. (To highlight
the importance of the predicition step, various prediction options are illustrated for the homotopy
algorithm of this paper via an example.) Secondly, if formulated properly, each intermediate point
along a homotopy path has some physical meaning which is useful if the optimization procedure
is forced to stop before final convergence. Thirdly, a homotopy path is not a descent path, hence
differentiating homotopy methods from most alternative techniques. For nonconvex problems the
quickest path to a solution may not be a descent path and hence a homotopy method may actually

have faster convergence.

The first homotopy algorithms for H, optimal model order reduction were based on directly
solving the corresponding 6ptimal projection equations (Zigi¢ et al. 1992,1993a). These algorithms
are numerically robust. However, they suffer from the curse of large dimensionality; that is. the
corresponding homotopy parameter vector is very large if the original model is large. Hence, these

algorithms are intractable for large scale problems.

The above deficiencies led to the development of homotopy algorithms directly based on the
gradient expressions (Ge et al. 1993a, 1993b). In these schemes, the parameter vector p represents
the reduced-order model. In order to keep the dimension of p relatively small and to avoid high order
singularities along the homotopy path, minimal-order parameterizations of the reduced-order model
were considered. Because of the reduction in the number of parameters, the resulting algorithms
are often more efficient than the original algorithms based on the optimal projection equations.
However, since the assumed parameterization may fail to exist or lead to ill-conditioning related to
the insistence on using the minimal number of parameters, these resulting algorithms sometimes fail
or have very poor convergence properties. One alternative approach proposed by Ge et al. (1993b)
is to develop an algorithm that utilizes several minimal parameter homotopies and is capable of
switching to an alternative parameterization if ill-conditioning is encountered with the current
parameterization. A second approach is to develop an algorithm based on the optimal projection

equations that efficiently exploits some of the inherent structure in the matrix design equations and




hence reduces the effective size of the homotopy parameter vector in the spirit of the homotopy

algorithm described in Collins et al. (1993).

This second approach is pursued in this paper. In particular, in order to compute the homo-
topy curve tangent vectors and the correction steps, the algorithm described here avoids explicit
computation and inversion of the Jacobian of the homotopy map as in the homotopy algorithms
of Zigi¢ et al. (1992,1993a). (It should be acknowledged that Zigi¢ et al. (1992,1993a) does not
ezactly invert the Jacobian of the homotopy map, but it does perform an operation that has an
equivalent computational burden.) Instead, the algorithm developed here computes the tangent
vectors and corrections by solving two Lyapunov equations mutually coupled by linear operators.
These equations are efficiently solved using the results of Richter et al. (1993) which exploits the Jow
rank properties of the coupling terms. The resultant computational savings over the computational
requirements of the algorithms of Zigi¢ et al. (1992,1993a) are roughly equivalent to those obtained
by computing a solution to a Lyapunov equation via a matrix method (e.g., Brewer (1978) and
Lancaster and Tismenetsky (1985)) versus computing a Lyapunov equation solution via solving
the associated linear matrix equation Ax = b where x is a vector representing the independent

elements of the solution to the Lyapunov equation.

It should be mentioned that the homotopy algorithms of Zigi¢ et al. (1992,1993a) are based on
arc length and hence allow for singular Jacobians. Hence, they do not assume that the homotopy
curve is monotonic with respect to the homotopy parameter. The algorithm here does assume
monotonicity. It appears to be possible to extend the algorithm to relax this assumption by using

a technique related to that developed by Zigi¢ et al. (1993b). However, this is a subject of future

research.

The focus of this paper is on computational efficiency. Rigorously proving.the existence of the
homotopy path that we formulate is beyond the scope of the current paper but is currently being
considered in research being performed at the Virginia Polytechnic Institute and State University
by Prof. Layne Watson and his students. However, in our computational experience, the homotopy

path has always existed.

The paper is organized as follows. Section 2 presents the optimal projection equations for the
H; model reduction problem. Section 3 gives a brief synopsis of homotopy methods. Next, Section
4 develops a new homotopy algorithm for optimal model reduction design based on the optimal

projection equations. Section 5 illustrates the algorithm with three illustrative examples. Finally,



Section 6 presents the conclusions.

Nomenclature

IE

R R™X"
Y>X
Y>X

zi; or X; ;
xt

X#

I,

tr X

1 X1le, 1 X11a

vec(+)

S‘nXTA

X%Snxn

expected value

n % 1 real vectors, m X n real matrices

Y — X is nonnegative definite

Y — X is positive definite

(i,7) element of matrix X

Moore-Penrose generalized inverse of matrix X (Rao and Mitra 1971)

Group inverse of matrix X (Rao and Mitra 1971)

r X r identity matrix

trace of square matrix X

Frobenius norm (|| X]|2 £ tr XX7T), absolute norm (]| X||a £ max; ;|X;;|)
the invertible linear operator defined such that

vec(S) 2 [s] s ---sT]T, § € RPXY,

where s; € R” denotes the j'! column of S.

the m-dimensional column vector whose it? element

equals one and whose additional elements are zeros. .

k" column of the matrix X (MATLAB notation)

the space of symmetric matrices in R™*"

Snxn X S'nxn

2. The Optimal Projection Equations for H, Model Reduction

Consider the n**-order, stable, linear time-invariant plant

(1) = Az(t) + Buw(t), (2.1a)
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y(t) = Cz(), o (2.1b)

where (A, B, C) is controllable and observable, z(t) € R™, w(t) € R™ is a white noise process with
positive-definite intensity V, and y(t) € R'. For a given n,, < n, the goal of the optimal fized-order

model-reduction problem is to determine an ni}-order model
Em(t) = Amzm(t) + Bnw(t), (2.2a)

ym(t) = szm(t), (22b)

where z,,(t) € R"™, ym(t) € R!, which minimizes the steady-state quadratic model error criterion
J(Am, B, Cm) £ lim E[(y ~ ym) ETE(y = ym)], (2.3)

where E is an error weighting matrix and R £ ETE is positive definite. To guarantee that J is

finite, it is assumed that A is asymptotically stable and since the value J is independent of the

internal realizations of the reduced-order models, we restrict our attention to the set of reduced-
-

order models, S} £ {(Am,Bm,Cm) : An is asymptotically stable, (A, Bn) is controllable and
(Am,Cr) is observable}.

Next, forming the augmented system consisting of (2.1) and (2.2),

#(1) = A%(t) + Bw(1), (2.4a)
§(t) = Ca(t), | (2.4b)
where
a2 [J0] 90260 - .
iz ['g Aom}, B2 [B’i], C2[C -Cul,

allows the cost (2.3) to be expressed as
J(Am,Bm.Cm) & 111%1}:[?(1)1%5(1)], (2.5a)
where R 2 CTRC. Next, introduce the weighted performance variables
=(t) 2 E(y(t) = ym(1)) = E(1),
where £ 2 [EC  — EC,). Also define the transfer function from w to z by
H(s) & E(sl; — A)™'B,
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-~ A
where 1 = n + n,,.

Then, it follows that if the augmented system A is asymptotically stable, (2.5a) is given by

o0

7 a1 oy . .
J(Ams BmsCm) = |H(N £ 5= |H(jw)llfdw = tr QR = tr PV, (2.50)

2r

where Q £ lim;—.o IE[Z(t)ZT(2)] is the steady-state augmented system covariance, P is its dual,

and V £ BV BT. Furthermore, Q and P satisfy the respective Lyapunov equations
0=AQ + QAT +V, (2.6a)
0=ATP+PA+R (2.6b)

Before presenting the main theorem we present a key lemma concerning nonnegative definite

matrices and several definitions.

Lemma 2.1. (Bernstein and Haddad, 1990).  Suppose @ € R"™™ and P € R™*™ are

symmetric and nonnegative-definite and rank QP = nm,. Then, the following statements hold:

(7) The n X n matrix

= QP(QP)*, (2.7)
is idempotent, i.e., T is an oblique projection and yank T = Npmp.
(i7) There exist G,I' € R™ *™ and nonsingular M € R"™ *"™ such that
QP =GTMT, . ‘ (2.8)
rét=1,_. y (2.9)

(1) Finally, if rank @ = rank P = rank QP = n,,, there exists a nonsingular transformation

W e R™ "™ such that

N Y
O=w [0 g]wT, (2.100)
P-_—w-T[g 8]14’-1, (2.100)

where Q € R™"" ™" is diagonal and nonsingular.
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Definition 2.1. A triple (G, M, I') satisfying property (i) of Lemma 2.1 is a projective fac-

torization of Q P.

Definition 2.2. A model (Am,Bm,Cn) is an eztremal of the optimal fixed-order model-

reduction problem if it satisfies the first order necessary conditions of optimality, i.e.,

aJ aJ oJ

94, - 88,°" 3c, "

where J(Am, Bm,Cnm) is defined by (2.3).

Definition 2.3. A model (Ap,, Bm,Cr) is an admissible eztremal of the optimal fixed-order

model-reduction problem if it is an extremal and is also in S}, i.e., the reduced-order model is

m?

asymptotically stable, controllable and observable.

Finally, define the positive-definite controllability and observability Gramians
s [T T

W, = / e BV BTe” tdt, (2.11)

0
w, 2 / AT CT RCeAtdt, (2.12)

0

which satisfy the dual Lyapunov equations
0= AW, + W AT + BV BT, (2.13)

0=ATW,+W,4+CTRC. (2.14)

Theorem 2.1. (Hyland and Bernstein, 1985). Suppose (Am, Br.Cp) is an admissible
extremal of the H, optimal model-reduction problem. Then there exist n x n honnega[tive-deﬁnite

matrices Q'.,Psuch that. for some projective factorization (G, M.I") of QP Am.Bn, and C,, are

given by
Am =TAGY, B, =TIB, Cn=CGT, (2.15a,b, ¢)
and such that O, P satisfy
0=AQ+ QAT + BVBT — 7, BVBT+T, (2.16)
0=ATP+PA+CTRC ~7ICTRCT,, (2.17)
rank Q = rank P = rank QP = n,n, (2.18)
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where 7 is given by (2.7) and 7, = I, — . Furthermore, the minimal cost is given by
J(AmyBm,Cm) = tr [CTRC(W, - Q] = tr [BVBT(W, — P)). (2.19)

Conversely, if there exist 7 X n nonnegative-definite matrices Q and P satisfying (2.16)—(2.18)
then the reduced-order model (Am, Bm,Cm) given by (2.15) is an extremal of the optimal fixed-
order model reduction problem. Furthermore, A,, is asymptotically stable if and only if (/i,E) is

detectable. In this case, (A, Bm) is controllable and (A,,,Cy,) is observable.

Remark 2.1. Partitioning Q and P given by (2.62) and (2.6b), respectively, as

2= [gi %lf] Q1 €RT,Qq € R, (2.20)
P= [;}2 f;;] ,PL € R™" P, ¢ R X"m . (2.21)
1

it follows from Hyland and Bernstein (1985)that Q and P given by (2.16) and (2.17) can be

expressed as

Q = QuQy'QMh, (2.22)
and

P = P,P7'PY, (2.23)
respectively.

Theorem 2.1 shows that one can compute an optimal reduced-order model by solving a set of
coupled, modified Lyapunov equations (2.16) and (2.17) subject to the rank condition constraints

(2.18). One approach to find a solution of (2.16) and (2.17) is based on homotopy methods.

3. Homotopy Methods for the Solution of Nonlinear Algebraic Equations

A “homotopy™ is a continuous deformation of one function into another. Over the past several
years, homotopy or continuation methods (whose mathematical basis is algebraic topology and
differential topology (Lloyd 1978)) have received significant attention in the mathematics literé-
ture and have been applied successfully to several important problems (Avila 1974. Wacker 1978,
Alexander and Yorke 1978, Garcia and Zangwill 1981, Eaves, et al. 1983, Watson. 1986). Recently,
the engineering literature has also begun to recognize the utility of these methods for engineering
applications (see e.g., Richter and DeCarlo 1983, 1984, Tufner and Chun 1984, Dunyak et al. 1984,
Lefebvre et al. 1985, Sebok et al. 1986, Horta et al. 1986, Kabamba et al. 1987. Shin et al.
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1988, Rakowska et al. 1991). The purpose of this section is to provide a very brief description of
homotopy methods for finding the solutions of nonlinear algebraic equations. The reader is referred

to Watson (1986, 1987), and Richter and DeCarlo (1983) for additional details.

The basic problem is as follows. Given sets U and V contained in R" and a mapping F: U — V,

find solutions u € U to satisfy
F(u) = 0. (8.1)

Homotopy methods embed the problem (3.1) in a larger problem. In particular let H:U x [0,1] —
R" be such that:

1) H(u,1)= F(u).

2) There exists at least one known ug € R™ which is a solution to H(-,0) = 0, i.e.,

H(uo,0) = 0. (3.2)

3) There exists a continuous curve (u(X),A) in R"™ x [0,1) such that
H(u(X),A)=0for A € [0,1], (3.3)

with
(4(0),0) = (uo,0). (3.4)

4) The curve (u()), ) is differentiable.

A homotopy algorithm then constructs a procedure to compute the actual curve such that the

initial solution u(0) is transformed to a desired solution u(1) satisfying

0= H(u(1).1) = F(u(1)). (3.5)

Now, differentiating H(u(}), A) = 0 with respect to X yields Davidenko’s differential equation

O0Hdu OH
Bu dX + —3—/\— = 0, (3.6)

which together with u(0) = u, defines an initial value problem. The desired solution u(1) is then

obtained by numerical integration from 0 to 1. Some numerical integration schemes are described

in Watson (1986, 1987).




4. A Homotopy Algorithm for H; Optimal Reduced-Order Modeling

This section first introduces a homotopy map based on the optimal projection equations and
then presents the linearly coupled Lyapunov equations that must be solved for the prediction
and correction steps. Next, the homotopy algorithm for the optimal model reduction problem is

presented. Finally, the initialization of the homotopy algorithm is discussed in detail.

4.1. The Homotopy Map

To define the homotopy map we assume that the plant matrices (A, B,C), the error weighting
matrix R and the disturbance intensity matrix V are functions of the homotopy parameter A € [0, 1].

In particular, it is assumed that

AN BO)] _[4 B A; B Ao B

e R EA R A R P )
R()\) = Ry + )\(Rf - Ro), (4.2)‘
V() = Vo + AV = Vo). (4.3)

Note that the above equations imply that A(0) = Ao, B(0) = By, ..., V(0) = V,, and that
A(1) = Ay, B(1) = By, ..., V(1) = V;. For notational simplification, we also define

(A) £ BIMV(A)BT(), E£(A) 2 CTMRMN)C(N). (4.4a,b)

The homotopy formulation 0 = H((Q(A), P(X)), A) is thus given by

0= ANQM) + QNAMNT + 7(A)T(A) + ) 7T(A) = 7(M) (M) (A), (4.5)
0= AMNTQM) + QM)A + T(NEN) + S(A)r(A) = TT(AEN)T(A), (4.6)
where -
rank Q(A) = rank P(A) = rank Q(A)P()) = n,, (4.7)
T(A) = QA)PN)[QNP(N)#, (4.8)

and A € [0.1].

4.2. The Derivative and Correction Equations

The homotopy algorithm presented later in this section uses a predictor/corrector numerical

integration scheme. The prediction step requires derivatives (é()\), ﬁ(A)), where M = %, while
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the correction step is based on using a Newton correction, denoted as (AQ,AP). Before con-
structing the derivative and correction equations, we state the following useful properties about the

contragredient transformation of (Q, P).

Using Lemma 2.1, equations (4.7) and (4.8) imply that

O(3) = WONANWT(A) = Wy ()QAWE(A), (4.9)
B = UT(AMNU(Y) = Uy ()M, (4.10)
and
r(3) = W) [I'g; 8] U(A) = Wi (WUZ(), (4.11)
where

WX 2 [Wi(2) Wa(N)], Wi(d) € R™™m, Wy()) € R™X(n="mm),

T
up) = [ZZTE:\\;] Ur(A) € R™*™ | Up(A) € RP¥(2=mm)

U(A) = W), (4.12a)

or, equivalently,
UMW) =1, (4.12b)
AN & [Qg’\) g] Q(X) € R™m X" | (4.13)

and Q(X) is diagonal and positive definite. For notational simplicity, we omit the argument A in

what follows.

The derivative equations, obtained by differentiating (4.5) and (4.6) with respect to A, are given

bv .
0= 4,0+ QAT + Ry(Q. P)+ RY(Q. P)+ 15+ VI, L (414)
and

0= ALP + PAu+ Rp(Q, P)+ R3(Q.P) + V5 + VT (4.15)

The correction equations, derived similarly by using the relationship between Newton’s method

and a particular error homotopy, are given by

0= AAQ + AQAT + R,y 5(AQ. AP) + RZ\Q(AQ, AP) + Ej, (4.16)

and
0=AJAP+APA, + Ryp(AQ.AP)+ RY (AQ,AP) + E;. (4.17)
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The detail derivation of (4.14)—(4.17) and the definitions of all the coefficients are described in
Appendix A. Comparing (4.16)-(4.17) with (4.14)-(4.15) reveals that the derivative and correction
equations are identical in form. Each set of equations consist of two coupled Lyapunov equations.
Since these equations are linear, using Kronecker algebra (Brewer 1978) and exploiting the rank
condition (2.18) of Q and P, they can be converted to the vector form Ax = b where for (4.14)-
(4.15) x is a vector consisting of the independent elements of Wi, Uy and Q. Hence, Ais a (2nn., +
n?) x (2nn, 4+ n%) matrix and must be inverted to compute x. Thus, inversion is hence very

computationally intensive for even relatively small problems (e.g., n = 10,ny, = 6).

Fortunately, the coupling terms R and R which are linear functions of (Wl, Uy, Q) or, equiv-
alently, (Q P) in (4.14) and (4.15), respectively, have relatively low ranks. Hence, the technique of
Richter et al. (1993), which exploits this low rank property, can be used to efficiently solve equa-
tions (4.14) and (4.15) (or, equivalently, (4.16) and (4.17)). In particular, this solution procedure
which is detailed in Appendix B, requires an inversion of a square matrix of dimension n,,(m +1),
which is identical to the dimension of the homotopy Jacobian inverted in the minimal parameteri-
zation approach (Ge et al. 19932,1993b). Hence, the computational efforts required by the present

approach are comparable to that required by a minimal parameter homotopy.

Also, note that if the homotopy path exists, the solution to the coupled Lyapunov equations
will be well-posed. Hence, the matrices A, and A, in (4.14)-(4.17) will have the property that any

two eigenvalues of a given matrix will not sum to zero.

4.3. Overview of the Homotopy Algorithm

Below, we present an outline of the homotopy algorithm. This algorithm describes a predic-
tor/corrector numerical integration scheme. In order to force the rank conditions (2.18) of Q and
P during intermediate steps. we use ‘the following scheme to update (Q.P) ;long the homotopy
path. First, usmg (A 15)-(A.17) and (A.29)-(A.31) and the algorithms described in Appendix C,
the prediction (Q P) and correction (AQ, AP) are converted to (W), Uy, Q) and (AW, AUy, AQ),
respectively. Note that © and AQ are forced to be n,, X n,, diagonal matrices with this formu-
lation. Next, we update (W, U;, ) with these predictions/corrections. Finally. new (QP) are
constructed with updated (W;,U;,Q) using (4.9) and (4.10) and the rank conditions (4.7) are

maintained.

There are several options to be chosen initially. These options are enumerated before presenting
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the actual algorithm. Note that each option corresponds to a particular flag being assigned some

integer value.

4.3.1. Prediction Scheme Options

Here we use the notation Ag, A_j, and A; representing the values of A at respectively the current
point on the homotopy curve, the previous point, and the next point. Also, ME dM/d) and 6())
is a vector representation of (Wj(A), Ui(X), Q(X)).

pred = 0. No prediction. This option assumes that 8(A;) = 6(Xo).

pred = 1. Linear prediction. This option assumes that 6(A;) is predicted using 8(Xo) and
B( o), i-e., B( A1) = 8(Xo) + (M1 = Ao)B(No).

pred = 2. Cubic spline prediction.

This prediction of 8();) requires 8(Xo),8(o),8(X—1), and 6(\_1). In particular,
vec[ﬁ()q)] = ag + (11/\] + 0/_7)\% + 03>\3,

where ag, a;, a2, and a3 are computed by solving

1 0 1 0 vec[f(A-1)]1 T

Ay 1 do 1| | vec[f(Aoy)]
20 a1 az as] | )y 0y Az an | T vec[6(Xo)]

X, 3% A3 3A vec[f(Xo)]

Note that if (A_;) and 8(A_;) are not available (as occurs at the initial iteration of the homotopy -

algorithm), then 6();) is predicted using linear prediction, i.e.,

8(A1) = 6(A0) + (A1 — A0)8(A0).-

4.3.2. Basis Options for Solving the Coupled Lyapunov Equations

The main computational burden of the algorithm given below is the solution of the coupled
Lyapunov equations (4.14) and (4.13) or, (4.16) and (4.17) at each prediction step or correction
iteration. Efficient solutions of these equations, as described in Appendix B, makes the algorithm
feasible for large scale systems. The most desired solution procedure is based on diagonalizing
the coefficient matrices A, and A, of the coupled Lyapunov equations. This is usually possible.

However, it is also possible that this diagonalization will be intractable for some points along the
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homotopy path. A numerical conditioning test is embedded in the program to determine whether
the coefficient matrices are truly diagonalizable. If they are not, then the coupled Lyapunov
equations are solved using the Schur decomposition. A second option relies exclusively on the

Schur decomposition.
basis = 1. A, and A, are diagonalized when solving (4.14)~(4.15) or (4.16)-(4.17).

basis = 2. A, and A, are in Schur form when solving (4.14)-(4.15) or (4.16)~(4.17).
4.3.3. Outline of the Homotopy Algorithm

Step 1. Initialize loop = 0, A = 0, AX € (0,1}, § = So, (Q,P) = (QO,PO).
Step 2. Let loop = loop + 1. If loop = 1, then go to Step 4.

Step 3. Advance the homotopy parameter A and predict the corresponding Q(A) and }3(/\) as

~ follows.
3a. Let Ag = A.
3b. Let A= Ag + AN

3c. If pred > 1, then perform the next step to compute é()\o) and f’(/\o) according to (4.14)
and (4.15). Else, let Q(2) = Q(Xo) and P(X) = P(Xo) and go to step (4), i.e., no prediction

is performed.

3d. Transform A, and A, into suitable matrix form by using the option defined by basis, then

solve (4.14) and (4.15) as described in Appendix B.

3e. Compute ( V1(Xo). UI(AO), Q()\o)) from (é()\o), f’(Ao)) by using (A.15)=(A.17) and the pro-

-

cedure described in Appendix C.
3f. Predict (W1(A), U1(X),Q2(X)) by using the option defined by pred.
3g. Compute (Q(A), P())) from (W1(X), Uy(X), (X)) using (4.9) and (4.10).
Step 4. Correct the current approximations Q(A') and ]3()\') as follows.
P

4a. Compute the errors (EE), E%) in the correction equations (A.24)-(A.25).

4b. Transform A, and A, into suitable matrix form by using the option defined by basis, then
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solve (4.16) and (4.17) as described in the Appendix B for AQ and AP.

4c. Compute (AW,, AU, AQ), from (AQ, AP) by using (A.29)-(A.31) and the algorithms
described in Appendix C.

4d. Let Wi()) — Wi(A)+ AWy, Uy(A) — Ui(A) + AUy, QA) — Q(A) + A
de. Compute (Q(A), P(N)) from (Wy(X), Ur(X), (X)) using (4.9) and (4.10).
4f. Recompute the errors (Ec‘.?,E;) in the correction equations (A.24)-(A.25). If the

C L MERlA  UIE A
max (e, T=(NlA

) < &%, where §* is some preassigned correction tolerance, then
set Mg = A, and adjust next step size AX according to the number of the correction steps
required to converge before going to Step 3b. Else, if the number of corrections exceeds a

preset limit, reduce AX and go to Step 3b; otherwise, go to Step 4b.
Step 5. If A = 1, then stop. Else, go to Step 2.

Note that the algorithm described above allows the step size (AX) to vary dynamically de-
pending on the speed of convergence which is gauged by the number of the correction steps. If
the number is small (e.g., < 3), we increase (e.g., double) the previous step size when computing
the next step. If it takes many steps to converge (e.g., > 10), or does not converge, the step size
is reduced (e.g., in half). 6~ in Step 4f is a preassigned correction error tolerance which can be
assigned with two values in the program. One is the intermediate correction error tolerance which
is used when A < 1. The other value is the final correction error tolerance which is usually smaller
and is used when A\ = 1. The choice of the magnitudes of theses tolerances are problem dependent.
In general, the intermediate correction tolerance is desired to be reasonably large to speed the
homotopy curve following. However, the algorithm may fail to converge if these tolerances are too

large. The final correction tolerance is usually small to ensure the accuracy of the final results.
4.4. Initial System Selection

In this subsection, we discuss the importance of the homotopy initialization and some guidelines
for choosing the initial. system matrices. It is assumed that the designer has supplied a set of
svstem and weighting matrices, S; = (Ay, B;.Cy, Ry, V) describing the optimization problem
whose solution is desired. In addition, it is assumed that the designer has chosen an initial set
of related system matrices So = (Ag. Bo.Co. Ro, ¥p) that has an easily obtained (QO,PO) which

is either a solution or a good approximation to the solution of the optimal projection equations

-
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corresponding to the initial system (i.e., (4.5)-(4.8) with A = 0).

While in general homotopy methods ease the restriction that the starting point be close to some

optimal of the optimization problem, the initial guess does affect the performance of the homotopy

algorithm. An algorithm with an initial estimate close to the optimal solution usually converges

fast. Furthermore, different initial systems may lead to different results. However, as illustrated

by Example 5.1 below, an initial system with lower cost than an alternative initial system will not

always lead to an optimal reduced-order model with lower cost. Below we describe an initialization

approach utilizing component cost analysis in balanced coordinates (Kabamba 1985, Skelton and

Kabamba 1986), to select the initial system matrices So. A similar approach is presented in Ge et

al. (1993a, 1993b).

4.4.1. Initialization Algorithm

(9)

(iid)

(i)

Perform a balanced transformation (Moore 1981) on the given system: z, £ T,z such that
the controllability and observability Gramians in the balanced coordinates are given by

W, = W, = diag (01,02,...,05), and 07 2 02... 2 0.

Denoting the balanced realization by (A, By, Cy), compute the component cost for the ith-
state z,; in balanced coordinates: v ; = U,‘CE(Z,i)Cb(:, i), where Cy(:, 1) is the it column

of Cb.

Perform a permutation transformation on the balanced state vector z, = T,z, such that in
the new coordinates, the component cost is sorted in a descending order, or, equivalently,

Vq,i > vq,; for i < j, where v, ; is the component cost associated with z,.;.

Denoting (A,, B,.C,) the triple after the above transformation, partition

A — Aa,l‘l Aa.l'.’ - Ba.l _ .
Aﬂ - [Aa,'.’] An,?'_’] 5 Ba - [Ba.ﬁ} . Ca - [Ca.l Ca.?]'

where A,y € R™*" B,y € R™*™.Cyy € R'X"m _ Note that the triple (4411, Ba.1,

C.,1) is a reduced-order mode] by using component cost analysis in balanced coordinates.

Choose the initial system matrices in the sorted component cost coordinates as

A, 0 B., '

where A, 11, Aa.22, Ba1, and C, 1 are given in (iv). The initial system triple (Ao, Bo, Co) is

obtained by transforming (Aq 0, Ba,0,Ca.0) back into the original coordinates using T, and
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T,. Next, form an augmented system consisting of (Ao, Bo,Co) and (Aa,11,Ba,11,Ca1)
and compute the initial guess Qo and P, using (2.22) and (2.23), respectively. Since
(Ao, Bo, Co) is a n**- order nonminimal model whose minimal realization can be represented
by a minimal ni’-order triple (A4 11, Ba11,Ca1), (QO,PO) is a solution of the optimal

projection equations corresponding to the initial system (i.e., (4.5)-(4.8) with A = 0).

Remark 4.1. Another option for choosing the initial system is based on the triple (A, By, Cy)
obtained in (ii) which describes the system in balanced coordinates. In particular, partition

Ap11 Abl2] [Bbl}
= ' ' , By = ' , C, = C C :
A [Ab.ﬂ Ab 22 ® = | By, b= [Co1 Ch,2]

where Ay1; € R" X" B,y € R"™*™ Cy1 € R'*"m  Note that the triple (Ay.11,Bo1,Ch.1) is
a reduced-order model by using the balanced reduction method (Moore 1981). Now, follow the

procedure stated in (v) to construct (Ao, Bo,Co) and (QO;PO) in the original coordinates.

5. Illustrative Numerical Examples

This section contains results and observations obtained on three examples. It is assumed
V = R = I for each example and the cost J is computed using (2.5b). Using these examples,
we compare different algorithm options. In particular, we desire to compare the the speed of the
algorithm with various prediction options and with the two basis options for solving the coupled
Lyapunov equations. The comparison are all based on a MATLAB implementation of the algorithm
and the program in each case was run on a 386, 40 MHz PC. Unless otherwise stated, the initial
system Sp and the initial estimate (Qo, f’o) for all the solutions are determined using the algorithms

described in Section 4.4.1.

Example 5.1. (Villemagne and Skelton 1987). The system given by

-1 3 0 -2
A=|-1 -1 1|, B=|21{, C=[100],
4 -5 —4 4 ’
is to be reduced to an optimal 1%'-order model. We follow the algorithm described in Section

4.2 and perform a suboptimal model reduction using component cost analysis to construct the

initial system and initial guess. The corresponding optimal reduced-order model obtained from the

homotopy algorithm is

An = -10.4365, B, = —1.5972, C,, = 1.5972.
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This model yields a cost J = 1.6882, which has the same value as the cost obtained in Zigi¢ et
al. (19932). However, if a different initial system which is based on the balanced reduction as

described in Remark 4.1 is chosen, we obtain

A, = -0.2863, B, = 0.8152, C,, = 0.8152.

This model yields a cost J = 1.2288 which is smaller than the above cost and is the same as the
cost obtained in Ge et al. (19932,1993b). Thus, using this example we demonstrate that different
optimal reduced-order models may be obtained if the initial system is different. This phenomenon

was also observed by Ge et al. (19932,1993b).

Example 5.2. (Hickin and Sinha 1980). The following plant

r—6.2036  15.0540 -9.8726 —-376.5800 251.3200 —162.2400 66.8270 1
0.5300 —-2.0176 1.4363 0 0 0 0
16.8460  25.0790 —43.5550 0 0 0 0
A= |377.4000 -89.4490 -162.8300 57.9980 —-65.5140 68.5790  157.5700 | ,
0 0 0 107.2500 —118.0500 0 0
0.3699  —0.1445 -0.2630 —0.6472 0.4995 —0.2113 0
L O 0 0 0 0 376.9900 0o
r 89.3530 0 7
376.9900 0
0 0
0 00 0010
B = 0 0 , C= [
0 0 0 00 0 0 01
0 0.2113
L0 0

is to be reduced to an optimal 2"%-order model.

We use this example to illustrate the effects with various prediction options. Table 5.1 shows
some of the run time statistics of the program for acquiring the optimal reduced-order model
(nm = 2) for this example when the diagonalizing basis was chosen in solving the coupled Lyapunov
equations, and various prediction options were used. The table compares the number of floating
point operations, the actual run time, the number of predictions and corrections performed, and
the minimum and maximum homotopy step sizes for each prediction option. From the table, note
that the homotopy path of the option with no prediction advanced extremely slow and the step
size was reduced to a value less than 107!, This inefficiency of the homotopy algorithm with no
prediction is explained using Figure 5.1 and 5.2 which show the behavior of ||Q(\)||r and [|P(A)||r

with respect to A, respectively, and hence reveal the magnitudes of the changes of Q()) and P())
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along the homotopy path. Both figures indicate steep slopes of the ||Q(})||r and ||P()||r curves
when A < 0.2. The option with no prediction actually sets Q(A+AX) = Q()) and P(A+A)) = P(}),
which implies that this option predicts the curves of Figures 5.1 and 5.2 advancing horizontally.
However, these figures show that when A < 0.2 this prediction is very poor. Therefore, as shown in
Table 5.1, even with an extremely small step size (107%), it is difficult for the no-prediction option

to advance at certain points along the homotopy path.

Prediction RealTime |Predictions/ Minimum Maximum

Option Megaflops (sec.) Corrections Step Size Step Size
None > 208 > 3114 > 166 < 107M 0.01
Linear 33.4 488 59 0.01 0.08
Cubic 22.8 341 40 0.01 0.16

Table 5.1. Run-Time Statistics of Example 2 with Intermediate §* = 5-1074.

Also, as would be expected, Table 5.1 indicates that the algorithm using the cubic spline
prediction is more efficient (by about 50%) than the algorithm implementing the linear prediction
option for this case, and both linear and cubic spline predictions are far more efficient than using
no prediction at all. The improvement in efficiency with cubic spline prediction increases when
the intermediate error tolerance is reduced, because in addition to the current data point and its
gradient used by linear prediction, the cubic spline prediction also utilizes the past data point and
its gradient along the homotopy path. This additional information becomes more accurate with a
tighter error tolerance. The ability to predict along the curve described by the changing parameters

is one of the practical benefits of formulating an optimization problem in terms of a homotopy.

It should be noted that both the linear and cubic spline prediction cases used the same final

correction tolerance and yielded the same optimal 2"¢-order model:

_ [-0.1997  0.5045

A B - [14.9616 ~0.0454 _ [ —0.0085 -0.2234
“mT | ~0.5044 —13.2750(° ™ T . Cp =

18.4615 0.3655 —-14.9617 15.4638 |°

with a cost J = 23249.3. The normalized output difference between the reduced-order mode] and

My o TE{(y=¥m ) R(y=¥m )
lim— e IE[yT Ry

for the suboptimal reduced-order model obtained by balancing or the component cost analysis in

the original plant,

,1s 15.2% for optima! reduced-order model and 35.4%

balanced coordinates. (For this problem the above two suboptimal reduction methods yield the

same reduced-order model.)

Example 5.3. (Collins et al. 1991) The given system is a state space model of the transfer
function between a torque actuator and an approximately collocated torsional rate sensor for the

ACES structure (Irwin et al. 1988). This SISO system is of order n = 17 and with the following
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plant matrices

A = block-diag(| ~0:0251  3:8433 ] [-0.0368 4.9057 ] [-0.0485 8.965¢4 ]
= block-diag(| _3 8433 _0.0251 " | -4.9057 —0.0368 ]’ | —8.9654 —0.0485_"
~0.0649 12.0770] [ —0.4281 14.6984] [ —0.1351 15.4179
~12.0770 —0.0649 |’ | —14.6984 —0.4281]°|-15.4179 -0.1351 )’

~5.1522 51.4577] [ —0.0320 73.5133
'[—51.4577 -5.1522] ’ [-73.5133 -0.0320] » —92.3998),

BT = [0.0017 0.0436 - 0.0031 0.0178 0.0117 0.0415 - 0.0162 0.0148 - 0.0529
—-0.2765 — 0.2988 —0.0188 0.4444 1.7120 — 1.6142 — 2.6348 - 4.8879-107%],
C = [-0.0177 0.0266 0.0097 0.0878 - 0.0057 0.0133 — 0.0152 0.0264 0.0037
—0.0090 - 0.0051 0.0181 0.0165 0.0052 — 0.0077 0.0026 184.7996).

An optimal reduced-order model with n,, = 6 is obtained

~0.0386 73.5136 0.0083  0.0227 —0.0381 —0.0303
—-73.5136 —0.0253 —0.0059 —0.0212 0.0345  0.0220
A _ | —0.0083 -0.0059 —0.0055 -3.8545 0.2623  0.0228
m =1 0.0227 0.0212 3.8545 —0.0541 0.1001  0.5725 |’
—-0.0381 —0.0345 —0.2623 0.1001 -0.1879 —15.3794
0.0303  0.0220  0.0228 —0.5725 15.3794 —0.0970
~0.1229 —0.12297 7
~0.0995 0.0995
~0.0123 0.0123
Bm=1 0038 |* ™= 0.0386
—0.0640 —0.0640
0.0456 ~0.0456

This model vields a cost J = 6.9521 - 1075,

-

Table 5.2 shows a comparison of the algorithms for solving the optimal reduced-order model
(nm = 6) for this example when the linear prediction is chosen and various basis options were used
in solving the coupled Lyapunov equations. The results indicate that the diagonalizing option saves

about 50% of computation time over the Schur-form option for this particular example.

Basis RealTime Predictions
Option Megaflops (sec.) & Corrections
Diagonal 145 897 14

Schur Form 310.5 1343 14

Table 5.2. Run-Time of Example 5.3 using Different Basis in Solving Coupled Lyapunov Equations.
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As noted in Zigié et al. (1993a), it took 77 hours to solve for an optimal reduced-order model
for this example using a DEC work station. The efficient solver for the coupled modified Lyapunov
equations and the selection of the initial estimates near the optimal solution significantly reduce
the computational time (to about 15 to 25 minutes on a 386, 40 MHz PC, depending on the basis
opti'on). In particular, to solve for the 6**-order optimal model which has n = 17, n, = 6, | =
m = 1, the approach described in Appendix B requires solving m. = n,(m + 1) = 12 Lyapunov
equations and inverting a 12 X 12 matrix for each prediction or correction step which averaged
about 13.7 Megaflops operations (Schur form basis). On the other hand, the approach proposed in
Zigi¢ et al. (1993a) involves the computation of the kernel of a Jacobian matrix for each tangent
vector computation. The Jacobian is constructed by exploiting the rank condition (2.18) and has
a dimension of 2nn,, + n? rows and 2n,, + n% + 1 or, a 240 x 241 matrix for this example.
The kernel is found by computing a QR factorization of the Jacobian matrix then using a back
substitution. By simulation, a typical flop counts for the MATLAB’s QR decomposition for a .real
n X (n + 1) matrix is about 3n®, which implies about 40 Megaflops for the QR decomposition of
the Jacobian matrix for this example. This simple analysis illustrates the improved efficiency of
the the approach proposed in this paper over previous homotopy approaches based on the optimal

projection equations. Increased efficiency was also due to better selection of the initial system.
6. Conclusions

This paper has presented a new homotopy algorithm for the synthesis of H, optimal reduced-
order models based on diréctly solving the optimal projection equations. The previous optimal
projection equations based homotopy algorithms (Zigi¢ et al. 1993a) are numerically robust but
suffer from large dimensionality. The number of variables associated with this approach is of order
nnp. By parameterizing the reduced-order model, the gradient-based homotopy algorithms (Ge et
al. 1993a.1993b) are more computationally efficient. but may cause numerical4ll-conditioning. By
using the results of Richter et al. (1993) to efficiently solve a pair of coupled Lyapunov equations,
the effective number of variables associated with this approach is reduced to n,,(m + [), which
is identical to the dimension of the homotopy Jacobian inverted in the minimal parameterization
approach of Ge et al. (1993a, 1993b). The examples of the previous section illustrated some of the

features of the various algorithm options and some effects of the initialization schemes.
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Appendix A. Formulation of the Derivative and Correction Equations

Before deriving the derivative and correction equations (4.14)-(4.17), we state the following

useful properties about the derivatives of the contragredient transformation of Q, P).
Note that it follows from (4.9)-(4.11) that 7()) can be expressed as
r(3) = QUTMAT T () = Q)T (N2 NV (A), (A.1)

or

7(A) = WOOATOWT(A) () = Wh(M)Q ()W (M) P(), (A.2)
where
-1
AT = [9 O(A) 8]

The representations of 7() given by (A.1) and (A.2) are used below as a convenient way of ex-

(A.3)

pressing the derivative equations partially in terms of Q()) and P()) as opposed to expressing the

derivative equations only in terms of Wi(A), Us(A), and Q(N).

Differentiating (A.1) or (A.2), gives the following expressions for 7

F = QUQTUT + QU UT + UIQ“QQ" + 0,070, (A.4)
or B
F = WQIWIP + (Wi WT + WhQT100 W 4 Wi tw) P, (A.5)
with
dﬁ: = (@720 = Q100 (A.6)

since Q) is diagonal. Below, we derive the matrix equations that can be used to solve for the

derivatives and corrections.
A.1. The Derivative Equations -

Differentiating (4.5) and (4.6) and using (A.4)-(A.6). yields

0= A.Q+ QAT + Ry + R} +Vy + VT, (A7)
where A
Ay 2 A+ (U, - 7)SU Q7L (A.8)
Ry 2 QUnTUT - 11072007 0T + 1h Q7 0TS - 7)T, (A.9)
Vg 2 [A+ (I - %T)iC’lﬂ'llf;f]Q, | (4.10)
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and

0= ATP +PA, + Rp+RE +Vp+ VE, (A11)
where
Au 2 A+ W QTIWIE(T, - 1), (A.12)
Ry 2 PW QW - w71 QW + Wi W E(IL, ~ 1), (A.13)
. = 1
Vs & P[A+ WiQ'WIE(I, - 57 (A.14)

Note that it follows from (4.1) that
A=A;-Ay, B=B;-By,, C=C;-Cy,
V=V;-V,, R=Rs-R,,
©=BVBT + BVBT + BVBT, £=CTRC+CTRC+CTRC.
Next, differentiating (4.9) and (4.10), yields

O = W,awT + W, aWT + W, QW (A.15)

P =0,0Ur + U, QUT + U, QUT. (A.16)

Furthermore, differentiating (4.12b) with respect to X gives

0=UW+UW = UIW, + UTW,. (A.17)

A.2. The Correction Equations .

The correction equations are developed with A at some fixed value. say A*. The derivation of
the correction equation is based on the relationship between Newton's method and a particular

homotopy. Below, we use the notation

. s Of

f(8) = TR (A.18)
Let f: R"™ — R" be C! continuous and consider the equation

0= f(9). (A.19)
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If 6%) is the current approximation to the solution of (A.19), then the Newton correction (Fletcher
1987) A4 is given by
pi+) _ g0 2 Ag = —f(6()) e, (A.20)

where

e 2 f(6). (A.21)

Now, let 8¢) be an approximation to 8 satisfying (A.19). Then with e given by (A.21) construct

the following homotopy to solve (A.19)
(1-Be = f(6(8), Belo,1]. (A.22)

Note that at 8 = 0, (A.22) has solution 8(0) = #(*) while 6(1) satisfies (A.19). Then differentiating

(A.22) with respect to 3 gives
06

—laep = — f(60))1e. A.23
Fglemo= —f6) e (4.23)

Remark A.1. Note that the Newton correction A6 in (A.20) and the derivative %|5=0 in
(A.23) are identical. Hence, the Newton correction Af can be found by constructing a homotopy

of the form (A.22) and solving for the resulting derivative -g—g|5=o. As seen below, this insight is

particularly useful when deriving Newton corrections for equations that have a matrix structure.

Now, we use the insights of Remark A.1 to derive the equations that need to be solved for
the Newton corrections (AQ,AP), or, equivalently, (AW;,AU;, AQ). We begin by recalling that
A is assumed to have some fixed value, say A*. Also, it is assumed that (Q‘,P',W{,U{,Q")
is the current approximation of (Q(A*), P(A®), 71(A7), U (A7), 82(A7)) and that EE’ and E7 are
respectively the errors in equations (4.5) and (4.6) with A = A~ and Q()) and P()) replaced by Q*
and P~, respectively.

Next, we form the homotopy

-

(1= B)E; = AQ(8) + Q(B)AT + 7(8)T + S77(8) + r(8)T7T(8). (A.24)
(1-B)E; = ATP(B)+ P(B)A + 7T(B)E + £7(B) + T (B)Er(B). (A.25)
Here, (A, B,C.R,V) = (A(A"). B(A"),C(A*), R(A"), V(X*)), i.e., the system matrices are assumed
to be evaluated at A = A" and at § = 0, (Q(O),P(O),T(O)) is the current approximation. Dif-

ferentiating (A.24) and (A.25) with respect to 3, noting the identity of (A.4)-(A.6) with 7 now

representing %, and using Remark A.1 to make the replacements

(A.26a,b)




vields

0=A,AQ + AQAT + Ry + Ry, + E3, (A.27)

where
Ay & A+ (I, - )EUQTWUT,
o £ QAU QUT - 127 AQQ VT + 1,7 AUTE(L, - )T,
and
. ) . )

0=AJAP+ APA, +Ryp+ RY, + E}, (4.28)

where

Aw 2 A+ W QWIS - 1),
Rpp & P(AWIQT'WT - W1Q7 P AQQT W + W Q1AW (I, — 7).

Next, replacing A with § in (4.9), (4.10), and (4.12) and differentiating them with respect to

B, the following equations are derived,

AQ = AW QW + W AQW T + W QAWT (A.29)
AP = ALQUT + U,A0U0T + U, QAUT, (A.30)
0=AUIW, + UF AW, (A.31)
where
dU o dW s d9
5 & == = ) .
AU & Joleo, AW dﬂlﬁo AQ 2 2519=0 (A.32)

Appendix B.  Efficient Computation of the Solution to the Prediction and Correction

Equations

This appendix presents a solution procedure using Richter et al. (1993) for efficiently solving
the prediction equations (4.14)-(4.15) and the correction equations (4.16)-(4.17). We commence

by recognizing that (4.14)-(4.15) and (4.16)~(4.17) have the following generic form:
= 4.Q + QAT + A1(Q. P) + Fp. (B.1)

0=AZP+ PA, + 5(0,P) + Fp. (B.2)
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where the linear operators F; : X2S™*" — §™*" and F, : X2S™*" — S™X" are defined by

F2(Q, P) & Rp(Q, P) + RL(G, ), (B.4)

and F* and Fp are constant forcing terms. It is easy to verify that (Q,P,fl,fg, FQ,F,-,) in the
above equations represents (Q P Ry+ RL,Rp+ R}, Vo + VT +E4,,Vp+VE+ Ep ) in (4.14)-

(4.15)and (AQ, AP RAQ+R Rop+RT Eé, EZ)in (4.16) (4.11),respectively. Our goal now

ad’ ap
1s to find for some integers m; and m, (as small as possible) linear operators ¢, : Xignxn L R™,

Gi:R™ — S™X" gy : XIS™X" ~ R™2, G, : R™2 — S™*™ gych that
F1(Q, P) = Gi(6:(0, P)), (B.5a)
F2(Q, P) = Ga((0, P)). (B.5b)

First, let T, and T, be the transformation matrices such that T 'A,T, and T;'A,T, arein

suitable form according to the basis option described in Section 4.3.2. Next, make the replacements
Ay = T AT, Ay — T;l‘Aw_Tw,
Q- TIQTT, P—TIPT,,
Fo =T FaT;T, Fp— TIFpT,,
Wy « T'W,, U, =TI,
Wy — T YWy, Uy — TIU,,
B—T;'B, C—CT,.
Then. in this new basis we obtain "
(Q P)= WIQWI T T (0, Q70T - 00700 0T + 1,972 0T ) BV BT 1, W], (B.6a)
and |
Rp(Q, P) = U QUT T T, (WA 0 W - W, 0 00 - W 4wy 01 W T wT )CTRCW,UT . (B.6b)
Now, rewrite (B.6a) as
Q(Q P) = FaSy( DU - 0,070 0T + 1,071 UT)SRG 4, (B.7)
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where for some integers my, < nand n, < n
Fqa e R™™ 8§ e R™*" SpeR™™ G, € R™ X", (B.7a)
In a similar way, we can express R;,(é, P) as
Rp(Q,P) = FeTo (W1 "W - W101007 WT + W, WIWT)TrGp,  (B.8)
where for some integers m; < n and n, < n
Fp € R™*™ T € R™*" Tpe R™™ Gge R™*", (B.8a)

The choice of (F4,S,S5r,G4) in (B.7‘) and (Fg,T.,Tr,Gp) in (B.8) are not unique. The solution

procedure we discuss below is most efficient if we minimize the products myns and mn,.

Using (B.7), it follows that ¢;(-) and G;(-) in (B.5) can be defined by

$1(0, P) £ vec(S[1h Q7 UT - 1,271Q010T + 130 UT)SR), (B.9)
and
Gi(z) £ Fy vec™(2)G 4 + G§[ vec™(2))TFT, (B.10)
such that
M) = Msny. (B.11)

Similarly, it follows from (B.8) that ¢,(-) and G2(+) in (B.6) can be defined by

$:(0, P) 2 vec(TL[WiQ7 W — w1070 W + w0~ W) TR), (B.12)
and
Gy(z) £ Fp vec™!(z )GB+GB[ vec” )]TFB, . (B.13)
such that
My = myn,. (B.14)

Note that it is assumed in (B.9) and (B.12) that W;, U, and Q are obtained from (A 15)-(A.17)

or, equivalently, (A.29)-(A.31). A procedure to compute W7, Ul, and Q given Q and P is presented
in Appendix C.

Now, with the definitions (B.9), (B.10), (B.12), and (B.13), the solution procedure for coupled,
modified Lyapunov equations described in Richter et al. (1993) is applied to solve for (Q P) in (B.1)
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and (B.2). With the above formulation, the efficiency of the coupled Lyapunov equations solver is
realized Richter et al. (1993) by exploiting the low rank properties of the coupling terms. Here,
we illustrate this by an example solving the prediction equations. Suppose m,l < (n —np,) < n,
i.e., the number of the inputs and outputs are less than the difference between the order of the
original plant and the desired reduced-order. Noting that (B.7) and (B.8) are equivalent to (A.9)

and (A.13), respectively, to minimize m; = m,n, and m; = myn,, we choose
Fuo=W1Q, S.=WITIT;T, Sp=B, Ga=VBTUW],
in (B.7), and
Fg=U,Q, T,=UIT;*T,, Tr=CT, Gp=RC,-T1),

in (B.8). Thus, using (B.7a) and (B.8a), it follows that m; = ny, ns =1, my = . 0y = m,
which results in m. = m; + my = nyp(m +1). Now, using the solution procedure described in
Richter et al. (1993), to solve the prediction equations (B.1) and (B.2), the primary computation
burden is to invert a matrix of dimension m. X m. and to solve two sets of m. + 1 standard
n X n Lvapunov equations, with one set having A, as the coefficient matrix and the other set with

coeflicient matrix A,,.

In comparison, by using Kronecker algebra (Brewer 1978) and exploiting the rank condition
(2.18) of Q and P, (B.1) and (B.2) can be converted to the vector form Ay = b where x is a
vector consisting of the independent elements of Wy, U; and §2 given by (4.12) and (4.13). Hence,
to get the solution for (Q, 13) it is required to invert an (2nn., 4+ n2 ) x (2nn,, + n2,) matrix. The
approach proposed in Zigi¢ et al. (1993a) involves the computation of the kernel of a Jacobian
matrix. The Jacobian matrix has 2nn., +n2, rows and 2n,, + n2 + 1 columns. The kernel is found
by computing a QR factorization of the Jacobian matrix then using a back substitution. Thus, if
m << n and | << n, which is usually true. m. is sufficiently small and the algorithm discussed in
this Appendix will be much more efficient. Furthermore, if (B.1) and (B.2) are first transformed
to the bases in which A, and A,, are nearly diagonal, respectively, the cost of computation can be

reduced significantly. The comparison in computation time is discussed in Example 5.3.
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Appendix C. Conversion from (Q,P) to (Wl,Ul,Q)

Note that the following procedure is valid only in the original basis. It is desired to compute

Wy, Uy and Q satisfying (A.15)-(A.17). Note that (A.15) implies
UfwWy =1, , UITW,=0, UIW, =o.
Pre- and post-multiplying (4.22) by U and UT respectively gives
Q=150 o+ [f)’ 8] + m (W,)7,
where

02 UQuUT,

Urw,
W, 2 UW, = [ .

UTW,
Similarly, pre- and post-multiplying (A.16) by WT and W respectively gives

B=tin o+ |y o]+ [5]al

where

PE2WThwW,

Partition i_/f_l and gl as

‘&"9 i

. [
Ql = .

'y
LUy

. ’—‘ill
‘_/‘.}.’.l = ]

It then follows from (C.4) and (C.7)~(C.9) that (A.17) is equivalent to

x7 . T
E'_u =-Uy.

29

(C.1)

(C.3)

(C.4)

(C.5)

(C.6)

(C.8)

(C.9)

(C.10)




It now follows from (C.8) that (C.2) is equivalent to

[Qu sz)rr} liﬁ/zllQ 0} [Q 0} [Q(_V'I_/”)T Q(E“)T}
- = + + , (C.11)

Q, 0 W, 0 0 0 0 0

and from (C.9) that (C.5) is equivalent to
Py (Ba)] [En® 0] [© 0] [0(U)T L)
. =1 . + + . (C.12)
P, 0 U,y 0 0 o0 0 0

Furthermore, (C.11) is equivalent to

Q,, =W+ 0+, (C.13)
Q,, = Wy 0. (C.14)

Similarly, equation (C.12) is equivalent to

-

U+ Q4+ 0,7, (C.15)
T2, Q2. (C.16)

i

11

[
I
<

21
Now, (C.14) and (C.16) imply respectively that

Wy =0,07, (C.17)
Ugp = By @71 (C.18)

Furthermore, substituting (C.10) into (C.13) yields

Q,, =~ +0-qu,,. ' C o (C.19)
Denote the (1, j) elements of P, Q“ , and Qu respectively by ﬁij, (_‘j’.j, and u;;. Then we can

;-
rewrite (C.15) and (C.19) as

Bi; = Lijws + 650 +wittyy, 4.5 € {1, 2. nm). (C.20)
gij = =L+ bl —witly;, 1,5 € {1,2,....nm), . (C.21)
where
-y 1fori= ]
bij = {0 for i # j. (€.22)
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Next, assume ¢ = j. Then subtracting (C.21) from (C.20) gives

P..—§..
g, = =i C.23
iy = = (C.23)

Now, assume ¢ # j. Multiplying (C.20) by (w;/w;) and adding the resultant equations to (C.21)

gives
. wibj twid;
Y=o o @ # ) (C.24a)
or, if w; = wj, .
. p. - 2 i
Uiy = " i (C.24b)

Now, U, is defined by (C.23) and (C. 24) and U,, by (C.18). W, is then defined by (C.10) and
W,, by (C.17). W, and U, are now defined respectively by (C.8) and (C 9). Using (A.17) it follows
from (C.4) and (C.7) that Wy and U, are given respectively by

Wl = VV_VZI, (C.25)
U, =UT0,. (C.26)
From (C.22) it follows that
p..+q..
o = BT i . Lis, (C.27)

which defines Q.

31




lQll

10.3 ¥ T T T T T T

10.2

10.1

10

9.9

9.8

9.7

9.6

9'5 1 L 1 i 2 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5.1. ||Q|lr vs A for Example 5.2

0.8

0.9




I1Plle

220

200

180

160

140

120

100

80

1 i 1 1

0.3 0.4 05 06 0.7 0.8 0.9 1
A

Figure 5.2. ||P||r vs A for Example 5.2



References

Alexander, J. C., and Yorke, J. A., 1978, The homotopy continuation method: numerically
implementable topological procedures. Transactions of the American Mathematical Society,
242, 271-284.

Aplevich, J.D., 1973, Gradient methods for optimal linear system reduction. Int. J.
Control, 18, 767-772.

Avila, J. H., 1974, The feasibility of continuation methods for nonlinear equations. SIAM
Journal of Numerical Analysis, 11, 104-144.

Bernstein, D.S. and Haddad, W.M., 1990, Robust stability and performance via fixed-
order dynamic compensation with guaranteed cost bounds. Math. Control Signal Systems, 3,
139-163.

Brewer. J.W., 1978, Kronecker products and matrix calculus in system theory. IEEFE
Trans. Circuit and Systems, 25, 772-781.

Bryson, A.E., Jr. and Carrier, A., 1990, Second-order algorithm for optimal model order
reduction. Journal of Guidance, Control and Dynamics, 887-892.

Collins, E. G., Jr., Davis, L.D., and Richter, S., 1993, A homotopy algorithm for maximum
entropy design. Proc. Amer. Contr. Conf., San Francisco, CA, 1010-1019.

Coliins, E. G., Jr., Phillips, D. J., and Hyland, D. C., 1991, Robust decentralized control
laws for the ACES Structure. Control Systems Magazine, 62-70.

De Villemagne, C., and Skelton, R.E., 1987, Model reduction using a projection formula-
tion. Int. J. Control, 46, 2141-2169.

Wacker, H., 1978, Continuation Methods. Academic Press, New York.

Dunya'kt J. P., Junkins, J. L., and Watson, L. T., 1984, Robust nonlinear least squares esti-
mation using the Chow-Yorke homotopy method. Journal of Guidance, Control and Dynamics,
7, 752-755.

Eaves. B. C., Gould, F. J., Peocitgen, J. O., and Todd, M. J., 1983, Homotopy Methods
and Global Convergence, Plenum Press, New York.

Fletcher, R., 1987, Practical Methods of Optimization: Second Edition. John Wiley and
Sons. New York.

Garcia. C. B., and Zangwill, W. 1., 1981, Pathways to Solutions, Fized Points and Equi-
libria, Prentice-Hall, Englewood Cliffs, NJ.

Ge, Y.. Collins, E. G., Jr., Watson, L. T., and Davis, L. D., 1993a, A input normal form
homotopy for the L? optimal model order reduction problem. submitted to Int. J. Control.

Ge, Y., Collins, E. G., Jr., Watson, L. T., and Davis, L. D., 1993b, A comparison of
homotopies for alternative formulations of the L2 optimal model order reduction problem.
submitted to J. Comp. Appl. Math.

Hickin. J., and Sinha, N.K., 1980, Mode! reduction for linear multivariable systems. IEEE




decentralized state feedback. IEEE Transactions on Automatic Control, 29, No. 2, 148-158.

Riggs, J. B., and Edgar, T. F., 1974, Least squares reduction of linear systems using
impulse response. Int. J. Control, 20, 213-223.

Sebok, D. R., Richter, S. and DeCarlo, R., 1986, Feedback gain optimization in decentral-
ized eigenvalue assignment. Automatica, 22, 433-447.

Shin, Y. S., Haftka, R. T., Watson, L. T., and Plaut, R. H., 1988, Tracking structural
optima as a function of available resources by a homotopy method. Computer Methods in
Applied Mechanics and Engineering, 70, 151-164.

Skelton, K.E., and Kabamba, P., 1986, Comments on “balanced gains and their significance
for L? model reduction”. IEEE Trans. Automat. Contr., 31, 796-797.

Spanos, J.T., Milman, M.H., and Mingori, D.L., 1990, Optimal model reduction and
frequency-weighted extension. Journal of Guidance, Control and Dynamics, 271-284.

Turner, J. D., and Chun, H. M., 1984, Optimal distributed control of a flexible spacecraft
during a large-angle maneuver. Journal of Guidance, Control and Dynamics, 7, 257-264.

Watson, L. T., 1986, Numerical linear algebra aspects of globally convergent homotopy
methods. SIAM Review, 28, 529-545.

Watson, L. T., 1987, ALGORITHM 652 HOMPACK: A suite of codes for globally conver-
gent homotopy algorithms. ACM Transactions on Mathematical Software, 13, 281-310.

Wilson, D.A., 1970, Optimum solution of model-reduction problem. Proc. IEE, 117,
1161-1165.

Wilson, D.A., 1974, Model reduction for multivariable systems. Int. J. Control, 20, 57-64.

Wilson, D.A., and Mishra, R.N., 1979, Optimal reduction of multivariable svstems, Int.
J. Control, 29, 267-278.

Zigi¢, D., Watson, L. T., Collins, E. G., Jr., and Bernstein, D. S., 1992, Homotopy meth-
ods for solving the optimal projection equations for the Hy reduced order model problem.
International Journal of Control , 56, 173-191.

Zigi¢. D., Watson, L. T., Collins, E. G., Jr.. and Bernstein, D. S.. 1993a. Homotopy

approaches to the Hy reduced order model problem. Journal of Mathematical Systems, Esti-
mation, Control. to appear.

Zigi¢. D., Watson, L. T.. and Collins. E. G., Jr.. 1993b, A homotopy method for solving
Riccati equations on a shared memory parallel computer. Sizth SIAM Conference on Parallel
Processing for Scientific Computing . 614-617. ' ’



Appendix K:

Reduced-Order Dynamic Compensation Using

the Hyland and Bernstein Optimal Projection Equations

Harris Corporation January 1995 00051.tex




September 1994

Reduced-Order Dynamic Compensation Using the
Hyland-Bernstein Optimal Projection Equations

by
Emmanuel G. Collins, Jr. Wassim M. Haddad
Department of Mechanical Engineering School of Aerospace Engineering
Florida A& M/Florida State Georgia Institute of Technology
Tallahassee, FL 32316 Atlanta, GA 30332-0150
(904) 487-6331 (404) 894-1078
FAX: (904) 487-6337 FAX: (404) 894-2760
ecollins@evax.eng.fsu.edu wm.haddad@aerospace.gatech.edu

Sidney S. Ying
Rockwell International
Collins Commercial Avionics
MS 306-100
Melbourne, FL 32934
(407) 768-7063
FAX: (407) 254-7805
ssy@dllws.cca.cr.rockwell.com

Abstract

Gradient-based homotopy algorithms have previously been developed for synthesizing H, op-
timal reduced-order dynamic compensators. These algorithms are made efficient and avoid high-
order singularities along the homotopy path by constraining the controller realization to a minimal
parameter basis. However, the resultant homotopy algorithms sometimes experience numerical ill-
conditioning or failure due to the minimal parameterization constraint. This paper presents a new
homotopy algorithm which is based on solving the optimal projection equations, a set of coupled
Riccati and Lyapunov equations that characterize the optimal reduced-order dynamic compensator.
Path following in the proposed algorithm is accomplished using a predictor/corrector scheme that
computes the prediction and correction steps by efficiently solving a set of four Lyapunov equations
coupled by relatively low rank linear operators. The algorithm does not suffer from ill-conditioning
due to constraining the controller basis and often exhibits better numerical properties than the
gradient-based homotopy algorithms.
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1. Introduction

The design of reduced-order dynamic compensators is of practical importance due to limitations
on the throughput of control processors. Hence, an important research area has involved the
development of techniques for synthesizing H, optimal reduced-order compensators. Most of the
techniques for designing optimal reduced-order compensators have been gradient-based parameter
optimization methods which represent the controller by some parameter vector and attempt to find
a vector for which the gradient of the performance index is zero, or, equivalently, the cost functional
is minimal.

1 several gradient-based approaches were discussed.

In the survey paper by Makila and Toivonen
Levine-Athans-type algorithms?~7 are based on using some standard optimization methods (e.g.,
conjugate gradient algorithms) to iteratively solve the necessary conditions of optimality which
minimize the cost increment. This approach requires the solution of a nonlinear matrix equation at
each correction step but guarantees a cost descent direction without a line search. The Anderson-
Moore algorithm?® is based on minimizing a quadratic, positive-definite approximation of the second-
order Taylor series expansion of the cost function increment. The descent Anderson-Moore approach
utilizes gradient search schemes to guarantee the cost is reduced at each iteration and enhance
convergence to a stationary point of the cost function®?. For Newton-like approaches!!, instead of
approximating the Hessian of the cost functional with a positive-definite matrix, the actual second-

order expansion is minimized which involves computing the Newton correction step as the solution

of a system of linear matrix equations at each iteration.

Recently, homotopy algorithms have been developed for the synthesis of optimal reduced-order
compensators!?~1%, A gradient-based algorithm has been developed!® that is made efficient and
avoids high order singularities along the homotopy path by constraining the controller realization to
a minimal parameterization basis. These algorithms!® sometimes exhibits numerical ill-conditioning
or can even fail due to the basis constraint. This is because minimal parameterizations of a given
form may not exist at each point along the homotopy path or may force the algorithm to be
ill-conditioned when the transformation to the given basis is ill-conditioned. Nonminimal param-
eterizations exhibit singularities along the homotopy path that can be handled heuristically but
may also lead to ill-conditioning. This ill-conditioning is also observed outside of the context of
homotopy algorithms by Kuhn and Schmidt!®. Similar conclusions are presented in Refs. 17 and

18 for the closely related H, optimal model reduction problem.




The homotopy algorithm of Ref. 19 was based on solving the optimal projection equations
developed by Hyland and Bernstein?®. The optimal projection equations are a set of coupled
Riccati and Lyapunov equations that characterize optimal reduced-order dynamic compensators.
The equations decouple and the Riccati equations specialize to the standard LQG Riccati equations
when the compensator is constrained to be full-order. The initial homotopy algorithm?®® for solving
the optimal projection equations utilized a very crude path following scheme in which the Riccati
equations and Lyapunov equations were not updated simultaneously. This caused the algorithm to

exhibit poor convergence properties, especially as the control authority was increased.

This paper presents a homotopy algorithm to solve the optimal projection equations that simul-
taneously updates the coupled Riccati and Lyapunov equations. The path following is accomplished
using a predictor/corrector integration scheme that computes the prediction and correction steps
by solving a set of four Lyapunov equations coupled by relatively low rank linear operators. These
equations are solved efficiently by using the technique presented in Ref. 21. This helps to avoid
the very large dimensionality of similar algorithms based on the optimal projection equations for
H, model reduction???3. A model reduction algorithm that uses a similar approach to that used
here is found in Ref. 24. Also, a related algorithm for full-order Maximum Entropy robust design
is presented in Ref. 25. These results all show that algorithms based on the optimal projection
equations tend to avoid the numerical ill-conditioning experienced in gradient-based algorithms due

to constraints on the realization of the reduced-order model or controller.

The current homotopy algorithm, unlike some of the previous algorithms!?8:22,23

, assumes
that the homotopy curve is monotonic with respect to the homotopy parameter. As discussed in
Ref. 13, this assumption may not always be satisfied. It appears to be possible to extend the
algorithm to relax this assumption without significantly increasing the required computations by

using a technique related to that developed in Ref. 26. However, this is a subject of future research.

The paper is organized as follows. Section 2 presents the optimal projection equations for the
H, reduced-order control problem. Section 3 gives a brief synopsis of homotopy methods. Next,
Section 4 develops a new homotopy algorithm for optimal reduced-order controller design based on
the optimal projection equations. Séction 5 illustrates the algorithm with two illustrative examples.

Finally, Section 6 presents the conclusion.




Nomenclature

IE expected value

R™ R™X*" n X 1 real vectors, m X n real matrices

Y>X Y - X is nonnegative definite

Y>X Y — X is positive definite

zij or X, ; (i,7) element of matrix X

Xt Moore-Penrose generalized inverse*’ of matrix X
X# Group inverse®’ of matrix X

I, - r X 7 identity matrix

tr X trace of square matrix X

I X5, 11 XA Frobenius norm (|| X ||z £ tr XXT), absolute norm (|| X||s £ max; ;| X ;|)
vec(-) ~ the invertible linear operator defined such that

vee(S) = [sT sF - -SE]T, S € RP*9,
where s; € R” denotes the j*" column of S.

eg,ﬂ) the m-dimensional column vector whose *? element

equals one and whose additional elements are zeros.

X, k) k'* column of the matrix X (MATLAB notation)
Snxn the space of symmetric matrices in R"**"
X:lzsnxn gnXn y gnxn

2. H; Optimal Reduced-Order Dynamic Compensation
Consider the nt*-order linear time-invariant plant
z(t) = Az(t) + Bu(t) + Dyw(t), (2.1)

y(t) = Ca(t) + Du(t) + Daw(t), (2:2)
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where (A, B) is stabilizable, (4,C) is detectable, z € R",u € R™,y € R!,and w € R%is a
standard white noise disturbance with intensity /4 and rank Dy = l. The intensities of Dlw.(t) and
D,w(t) are thus given, respectively, by V; = DyDT >0, and V2 2 D, DT > 0. For convenience, we
assume that Vi, £ D;D;r =0, i.e., the plant disturbance and measurement noise are uncorrelated.
The goal of the optimal reduced-order dynamic compensation problem is to determine an nth_order

dynamic compensator
ic(t) = Aczc(t) + ch(t), (2-3)

u(t) = —Cez(1), (2.4)
which satisfies the following two design criteria:

(i) the closed-loop system corresponding to (2.1)-(2.4) given by

i(t) = AZ(t) + Dw(t), (2.5)
where
-y o | 2(t) ial 4 -BC. hal| D } 9
2 = [xc(t)] A= [Bcc 4c-B.0C.)" P7|B.Dy)0 (20
is asymptotically stable; and
(i) the steady-state quadratic performance criterion
t
J(Ae, By Ce) 2 lim —1—IE (2T (s)Raz(s) + uT(s) Ryu(s)]ds, (2.7)
—00

0

where R; > 0 and R, > 0, is minimized.

Although a cross-weighting term of the form 2zT(#)Rjou(t) can also be included in (2.7),
we shall not do so here to facilitate the presentation. With the first criterion, we restrict our
attention to the set of stabilizing compensators, S, £ {(AC,BC,CC):A is asymptotically stable}
which guarantees that the cost J is finite and independent of initial conditions. The cost (2.7) can

now be expressed as

J(Ac, B, Ce) = lim E[zT(t)RZ(t)), (2.8)
where
D & R1 0
R 2 [ 0 c;ngcc]' (2.9)

Next, by introducing the performance variables
z(t) £ E1z(t) + Equ(t) = Ei(t), (2.10)
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where E 2 [E1 EC¢], and defining the transfer function from w to z by

H(s) £ E(sI; - A)™'D,

where 7 2 n + n,, it can be shown that when 4 is asymptotically stable, (2.8) is given by

o

- 1 -
J(Acy Be,Co) = | H(s)|I; & 5 | NHGW)pdw.

—00
For convenience we define the matrices R, = E;rEl and R, £ E;rEg which are the H, weights for
the state and control variables. Since A is asymptotically stable, there exist nonnegative-definite

matrices Q € R*** and P € R**" satisfying the closed-loop steady-state covariance equation and

its dual, i.e.,
0=AQ + QAT +V, (2.11)
0=ATP+PA+R, (2.12)
where
= [‘(/)1 BC{ZBE] : (2.13)

The cost functional (2.7) can now be expressed as
J(A¢, Be,C.) = tr QR = tr PV. (2.14)
Before presenting the main theorem we present a key lemma concerning nonnegative definite
matrices and several definitions.

Lemma 2.1.28  Suppose Q € R**" and P € R™*™ are symmetric and nonnegative-definite and

rank QP = n.. Then, the following statements hold:
(i) QP is diagonalizable and has nonnegative eigenvalues.
(77) The n x n matrix
T = QP(QP)*, (2.15)
is idempotent, i.e., 7 is an oblique projection and

rank 7 = n,. (2.16)

Thus, if 7 is given by (2.15), then there exists a nonsingular matrix W € R"*" such that

r=W []ac g] W (2.17)
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(##4) There exist G,I" € R™*™ and nonsingular M € R"*™ such that
QP =G™™TI, (2.18)

rGé* =1,.. (2.19)

(év) If G, I', and M satisfy property (iii) then

rank G = rank I' = rank M = n,, (2.20)
(QPy* =G™M™'T, (2.21)
r=G'rI, (2.22)

G =GT,I'r=. (2.23)

(v) The matrices G, I', and M satisfying property (i) are unique except for a change of basis
in R™, ie., if G',I"", and M’ also satisfy property (iv), then there exists nonsingular
T, € R™*% such that G' = TXG,I" = T,'I"M' = T;* MT.. Furthermore, all such M

are diagonalizable with positive eigenvalues.

(vi) Finally, if rank Q = rank P = rank QP = n., there exists a nonsingular transformation

W € R™*™ such that

. Q 0
Q=W[0 O]WT, (2.24)
P=w-T [g g] w-t, (2.25)

0 =70 = QrT = 77T, | (2.26)

P=7TPp=pPr=7TpPr (2.27)

Definition 2.1. A triple (G, M, I') satisfying property (iii) of Lemma 2.1 is a projective

factorization of QP.

Definition 2.2. A compensator (A, B;,C.) is an eztremal of the optimal generalized fixed-
order dynamic compensation problem if it satisfies the first order necessary conditions of optimality,

i.e.,
aJ aJ aJ

m:o, 8_}3_C=0’ 5a:o,
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where J(A., B, C.) is defined by (2.7).

Definition 2.3. A compensator (A, B, C.) is an admissible extremal of the optimal gener-
alized fixed-order dynamic compensation problem if it is an extremal and is also in &, i.e., the

closed-loop system is asymptotically stable.

Finally, for convenience in stating the main results we define

S£CT,'c, ¥ = BR;'BT. (2.28)

Theorem 2.1.2° Suppose (A, B.,C.) is an admissible extremal of the optimal fixed-order
dynamic compensation problem. Then, there exist n X n nonnegative-definite matrices P,Q,P,

and Q such that A., B, and C, are given by
A.=T(A-QE -XP+QCTV, ' DR;'BTP)GT, (2.29)

B.=TIQC™v,?, C.=R;'BTPGT, (2.30)

for some projective factorization (G, M, I") of Q P and such that the following conditions are satis-

fied:

0=ATP+PA+ R — PSP+ 7L PTPTy, (2.31)
0=AQ + QAT + V1 - QEQ + 7. QEQ7T, (2.32)
0=(A-Q5)TP+ P(A- QL)+ PSP — 7l PSPry, (2.33)
0=(A-ZP)0+QA-SP)T+QSQ - 7.QTQr], ‘ (2.34)
rank Q = rank P = rank QP = n, (2.35)
T=(QP)QP)*, T = - (2.36)

Furthermore, the minimal cost is given by
J(Ac, B, Co) = tr[PV) + Q(PEP — 71 PLP7,))], (2.37)

or, equivalently,

J(Ac, Be,Ce) = tr{QR, + P(QEQ — 7.QZQ7T)). (2.38)




Conversely, if there exist n x n nonnegative-definite matrices P, @, P, and ( satisfying (2.31)-(2.36)
then the compensator (4., B.,C.) given by (2.29) and (2.30) is an extremal of the optimal fixed-
order dynamic compensation problem. Furthermore, A is asymptotically stable if and only if (fi, E)

is detectable ( or, equivalently, (A, D) is stabilizable).

Remark 2.1. Partitioning Q and P given by (2.11) and (2.12), respectively, as

o= (3 Gl eeraern, (2:39)
p= [1% };:]’PIER"X"’HGR""‘“, (2.40)

it follows from Ref. 20 that P,Q, P and () given by (2.31)—(2.36) can be expressed as

P =P, - PP PY, (2.41)
Q= Q1 - Q12Q;'Q%,, (2.42)
P=pP,P 1P, (2.43)
and
Q= QnQ;'QL, (2.44)
respectively.

Theorem 2.1 shows that one can compute an optimal reduced-order controller by solving the set
of coupled, modified Riccati and Lyapunov equations (2.31)-(2.34) subject to the rank condition

constraints (2.35). One approach to find a solution of (2.31)-(2.34) is based on homotopy methods.

3. Homotopy Methods for the Solution of Nonlinear Algebraic Equations

A “homotopy” is a continuous deformation of one function into another. Over the past several
years, homotopy or continuation methods (whose mathematical basis is algebraic topology and
differential topology?®) have received significant attention in the mathematics literature and have

been applied successfully to several important problems3°—3%

. Recently, the engineering literature
has also begun to recognize the utility of these methods for engineering applications3®~4%, The
purpose of this section is to provide a very brief description of homotopy methods for finding the
solutions of nonlinear algebraic equations. The reader is referred to Ref. 35, 36 and 46 for additional

details.




The basic problem is as follows. Given sets U and V contained in R™ and a mapping F: U — V,

find solutions u € U to satisfy
F(u) = 0. (3.1)

Homotopy methods embed the problem (3.1) in a larger problem. In particular let H:U x [0,1] —
R" be such that:

1) H(u,1)= F(u).

2) There exists at least one known ug € R™ which is a solution to H(-,0) =0, i.e.,

H(uo,()) = 0. (32)

3) There exists a continuous curve (u(A),A)in R™ x [0, 1] such that
H(u()),A)=0for X € [0,1], (3.3)

with
(u(0),0) = (uo,0). (3.4)

4) The curve (u(A), A) is differentiable.

A homotopy algorithm then constructs a procedure to compute the actual curve such that the

initial solution u(0) is transformed to a desired solution u(1) satisfying

0= H(u(1),1) = F(u(1)). (3.5)

Now, differentiating H(u(A), A) = 0 with respect to A yields Davidenko’s differential equation

OH du 8H__0 3
Tudy T an O (3:6)

which together with u(0) = up, defines an initial value problem. The desired solution u(1) is then
obtained by numerical integration from 0 to 1. Some numerical integration schemes are described

in Ref. 35 and 46.




4. A Homotopy Algorithm for H, Optimal Reduced-Order Control

This section begins by introducing a homotopy map based on the optimal projection equations.
The construction of the initial point is then discussed in detail. Finally, the actual homotopy

algorithm is presented.

4.1 The Homotopy Map

To define the homotopy map we assume that the plant matrices (A, B, C, D), the cost weighting
matrices (R;, R;), the disturbance matrices (V}, V3) are functions of the homotopy parameter A €

[0,1). In particular, the following is assumed:

AN) BN _[4 B A; B Ay B

BB R AR EAAR Ea3)! (41)
Ri(A)= Ryo+ A(R1,s— Ri1p), R2())= Rao+ AM(R2,5 — Rap), (4.2)
Vl(/\) = ‘/1'0 + A(I/],If - Vlyo), VZ(A) - V2,0 + A(VZ,I —_ VQ,O). (4.3)

Note that the above equations imply that A(0) = Ao, B(0) = By, ..., V2(0) = V2, and that
A(l)= Ay, B(1) = By, ..., V3(1) = Vy ;. For notational simplification, we also define

£(A) £ BO)R;'(MBT(), E(0) = CTV (MO, (4.4)

The homotopy formulation 0 = H((P,Q, P,Q), ) is thus given by

0= ANTPO)+ P(A)AN) + Ri(\) + 7T (N PA)Z(A)P(A)T(N)

— 7N PAZ(A)P(A) = P(A)Z(AN)P(A)T(N), (4.5)
0=AMNRQM) + QAT + 1(A) + T(N)QMNENQ(A)TT(A)
- T(AQMNZMNQ(N) = QINEMNQA)TT(A), (4.6)
0= (A(N) = QLIEANTP() + PO)(ARX) = Q(N)E(N)) = rT(A)P(A)S(A) P(M)7())
+7T(A)P(NZ(A)P(A) + P(A)Z(A)P(A)T(N), (4.7)
0= (A(A) = S(A)PA)QA) + QAR = Z(A)PONT = 7(N)QMNEMNR(N)TT(A)
+7(NQMNZMNR(A) + QZMNRQ(AN)TT(N), (4.8)
where
rank Q()\) = rank P()\) = rank Q(A\)P()\) = n, (4.9)
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7(A) = QQ)P(N)QMN)P(M)*, (4.10)
and A € [0,1].

4.2. Initial System Selection

Before describing the general logic and features of the homotopy algorithm for H; optimal
reduced-order dynamic compensation, we first discuss the importance of the homotopy initializa-
tion and some guidelines for choosing the initial system matrices. It is assumed that the designer
has supplied a set of system and weighting matrices, Sy = (Ay,B;,Cy, Dy, Ry 4, R2,5, V1,5, Va,5)
describing the optimization problem whose solution is desired. In addition, it is assumed that the de-
signer has chosen an initial set of related system matrices S = (Aq, Bo.Co, Do, R1,0, R2,0, V1.0, V2,0)
that has an easily obtained (P, Qo, P,, Qo) which is either a solution or a good approximation to the
solution of the optimal projection equations corresponding to the initial system (i.e., (4.5)-(4.10)

with A = 0).

While in general homotopy methods ease the restriction that the starting point be close to
some optimal of the optimization problem, the initial guess does affect the performance of the
homotopy algorithm. For example, it is always possible to choose the initial system Sp such that
(Ao, Bo, Co, Dg) is nonminimal with minimal dimension n.. In this case, it is easy to show that the
corresponding LQG compensator has minimal dimension n, < n. and will usually have minimal
dimension n, = n.. In the latter case, (A0, B0, Cc0) is chosen as a minimal realization of the
LQG compensator. However, we have seen experimentally that the corresponding homotopy can
lead to failure of the homotopy algorithm. Similar observations have been made in Ref. 13. In
particular, Ref. 13 shows that allowing the plant parameters to vary along the homotopy path can

lead to the development of destabilizing controllers or path bifurcations.

The reason that the above type of homotopy would cause problems is somewhat intuitive
since for a given A, say A; € [0,1], a controller (A.(A1), Bo(A1),Ce(A1)) that stabilizes the plant
(A(A1), B(A1),C(A1), D(A1)) may not stabilize the plant (A(Az), B(A2), C(A2), D(A2)) for Ay # Ay.
Hence, below we present ways of constructing the initial system Sy that does not require the plant
parameters (A, B,C, D) to vary along the homotopy path. In this case, a controller that stabilizes
the plant at A; will also stabilize the plant at A, > A;. This argument in itself does not ensure
that at every step along the homotopy algorithm the controller design remains stabilizing. This
is a subject that requires further research. It should be mentioned that another advantage of a

homotopy that varies only the performance weights (R;, Rz, V], V3) is that the optimal controller
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| at each point is optimal with respect to the real nominal plant (Ay, By, Cy, Dy).
‘ .

i Now, we present two options for constructing Sp as proposed in Ref. 15.
|

Option 1. One alternative is to choose Ag to be stable (e.g., if Ay is stable, let Ag = Ay or
if Ay is unstable, let Ag = Ay — ol where g is sufficiently large to ensure stability of Ap) and, as
elaborated in Ref. 47 to choose either (R; 0, V2,0) or (V1,0, R2,0) Where Ry 0 >0, Vi0 > 0,Ry0 >0,

and V0 > 0, as given below. (All other initial parameters are equal to their final values.)

(7) In a basis in which

(Ao)n 0 } e xn
Ag = , (A € R XM, 4.11
0 [(A0)21 (Ao)22 (Ao (4.11)
choose R; o to be of the form
R O n n
Ryp = [( 1(’)0)11 0] , (Rio) € R, (4.12)

and for some positive scalar o choose

Vao = aVy ;. (4.13)
(i7) In a basis in which
Ap = [(A%)n E’:Eg;z] , (Ao)11 € R, (4.14)
choose V) ¢ to be of the form
Vi = [(V18))11 g] . (Vo) € RPxme, (4.15)
and for some positive scalar a choose
Ryo =aRy ;. (4.16)

As discussed in Ref. 47, o appearing in (4.13) and (4.16) can always be chosen sufficiently large
so that the corresponding LQG compensator is nearly nonminimal. In this case, (Ac0,Bco,Ceo)
is easily‘obtained by reducing the LQG compensator to its (nearly) minimal realization using an
appropriate technique such as balanced controller reduction®®. Next, form the closed-loop system
consisting of (A, Bg,Co, Do) and (Aco, Bco,Ceo) and compute the initial guess Py, Qo, Py, and
Qo using (2.41)~(2.44), respectively. Since (Ac0, Be,o, Cc0) is a close approximation to the minimal

realization of the corresponding nearly nonminimal LQG compensator, (P, Qo, PO,QO) is a good
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approximation of the solution of the optimal projection equations corresponding to the initial

system (i.e., (4.5)-(4.10) with A = 0).

Option 2. A second alternative (which does not require Ag to be stable) is based on the following
experimental observation. The initial system can be chosen to correspond to a low authority control

problem, e.g., one can choose
Ryo=aRzy, Vao=pVyy,

with « and § large and let all other initial system parameters equal their final values. In this
case it has been observed that the reduced-order controller (A, ,,B.r,C.,) obtained by sub-
optimal reduction of an LQG controller will often yield virtually the same cost as the LQG
controller??, hence indicating that (Ac,r, Bcr,Ce r) may be nearly optimal. In this case, we choose
(AcosBeo,Ceo) = (Acry Bery Cer). (It should be noted that these observations are partially ex-
plained by the results in Ref. 47.) Then, follow the same procedure described in option I to form

the closed-loop system and compute the initial guess (P, Qo, PO,QO).

4.3. The Derivative and Correction Equations

The homotopy presented next uses a predictor/corrector numerical integration scheme. The
prediction step requires derivatives (P(A),Q(z\),ﬁ()\), é(/\)), where M £ %, while the correction
step is based on using a Newton correction, denoted as (AP, AQ, AP, AQ). Before constructing the
derivative and correction equations, we state the following useful properties about the derivatives

of the contragredient transformation of (Q, P).

Using Lemma 2.1, equations (4.9) and (4.10) imply

Q(A) = WOANWT(A) = Wi (M)QN)WE (), (4.17)
PO = UT(N)AMNUQ) = U (MQNUT(N), (4.18)
and
=w | 2 uey = meeren, (4.19)
where
W(A) £ [Wi(X) Wa(R)], Wi()) € R*™ ™ W,(A) € R*X(n=ne) (4.20)
A& Uir(A) r nxn, nx(n—-n.)
U\ & vIO | i) ERTT U0 € R <, (4.21)
U) = W=, (4.22)
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or, equivalently,

UMNW(A) = I, (4.23)
a2 [M) 0] ey e e, (4.24)

and Q()) is diagonal and positive-definite. For notational simplicity, we omit the argument A in

the subsequent equations.

The derivative equations, obtained by differentiating (4.5)-(4.8) with respect to A, are given
by

0= AP+ PAp+ Rp(P,Q,P,Q)+ RE(P,Q,P,Q)+ Ve + VE + Ry, (4.25)
0= AQQ + QAL + Ro(P,Q,P,Q) + R{(P,Q,P,Q) + Vo + V3 + WA, (4.26)
0= ATP + PAy + Rp(P,Q, P,Q) + R5(P,Q,P,Q) + Vp + VT, (4.27)
0= 4.Q + QAT + Ry(P,Q, P,Q) + RL(P,Q, P,Q) + V5 + VT, (4.28)

The correction equations, derived similarly by using the relationship between the Newton’s

method and a particular error homotopy, are given by

0= ALAP + APAp + Rp(AP,AQ,AP,AQ) + RE(AP,AQ,AP,AQ) + E}, (4.29)
0= AQAQ + AQAL + Ro(AP,AQ,AP,AQ) + RG(AP,AQ,AP,AQ) + EJ, (4.30)
0=AJAP+APA, + Rp(AP,AQ,AP,AQ) + RL(AP,AQ,AP,AQ) + E}, (4.31)
0= A,AQ + AQAT + Ry(AP,AQ, AP, AQ) + RL(AP,AQ, AP, AQ) + V3, (4.32)

The detail derivation of (4.25)-(4.32) and the definitions of all the coefficients are described
in the Appendix A. Comparing (4.29)-(4.32) with (4.25)-(4.28) reveals that the derivative and
correction equations are identical in form. Thus, only one solution procedure would be required to
solve both sets of equations. Each set of equations consist of four coupled Lyapunov equations. Since
these equations are linear, using Kronecker algebra®! they can be converted to the vector form Ay =
b where for (4.29)-(4.32) x is a vector containing the independent elements of AP, AQ, AW;, AU,,
and AQ. A is then a square matrix of dimension n(n + 1) + (2nn. + n?). Inversion of A is hence

very computationally intensive for even relatively small problems (e.g., n = 20,n. = 10).

Fortunately, the coupling terms Rap, Rag, R, p, and RAQ which are linear functions of (AP,
AQ,AP.AQ) or, equivalently, (AP,AQ,AW,,AU;,AQ) in (4.29)-(4.32), have relatively low
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ranks. Hence, the technique of Ref. 21, which exploits this low rank property, can be used to
eﬂicientlyvsolve equations (4.29)-(4.32) (or, equivalently, (4.25)—(4.28)). In particular, this solution
procedure requires inversion of a square matrix of dimension (2n + n.)(m+ 1)+ 1 and to solve four
sets of (2n + n.)(m + !) standard n x n Lyapunov equations, which has much less computational
burden than the approach using Kronecker algebra as described in the previous paragraph. In
comparison, the dimension of the homotopy Jacobian inverted in the minimal parameterization
approach is n.(m + [) which is smaller than the characteristic dimension associated with this ap-
proach. However, the algorithms based on these minimal parameterization basis sometimes exhibit
numerical ill-conditioning or can even fail due to the basis constraint. The details of the solution

procedure are described in Appendix B.

Also, note that if the homotopy path exists, the solution to the coupled Lyapunov equations
will be well-posed. Hence, the matrices Ap, Ag, Ay, and A, in (4.25)—(4.32) will have the property

that any two eigenvalues of a given matrix will not sum to zero.

4.4 Overview of the Homotopy Algorithm

Below, we present an outline of the homotopy algorithm. This algorithm describes a pre-
dictor/corrector numerical integration scheme. In order to force the rank conditions (4.9) of Q
and P during intermediate steps, we use the following scheme to update (P,Q,P,Q) along the
homotopy path. First, using (A.29)-(A.31) and (A.57)-(A.59) and the algorithms described in
Appendix C, the prediction (é, }3) and correction (AQ, AP) are first converted to (W4, Ul,Q) and
(AW, AU, AQ), respectively. Note that Q and AQ are forced to be n. X n. diagonal matrices
with this formulation. Next, we update (P,Q,W;,U;,§1) with these predictions/corrections. Fi-
nally, new (Q, P) are constructed with updated (W, U, ) using (4.17) and (4.18) and the rank

conditions (4.9) are maintained.

There are several options to be chosen initially. These options are enumerated before presenting
the actual algorithm. Note that each option corresponds to a particular flag being assigned some

integer value.

4.4.1 Prediction Scheme Options

Here we use the notation Ag, A_;, and A, representing the values of A at respectively the current
point on the homotopy curve, the previous point, and the next point. Also, M = dM/d) and f(A)
is a vector representation of (P(X), Q(X), Wi(A), Ui(A), (X)). ,
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pred = 0. No prediction. This option assumes that 8(A;) = 6(Xo).

pred = 1. Linear prediction. This option assumes that 6();) is predicted using 8()o) and

6(Ao). In particular,

B(A1) = 6(%0) + (A1 = A0)b(Xo), (4.33)
pred = 2. Cubic spline prediction. This prediction of 8(\,) requires 0(A0),9(A0),9(A_1), and
#(A_1). In particular,

vec[f(M1)] = ao + a1 A1 + apA? + a3)3,

where ag,a, a2, and a3 are computed by solving

1 0 1 0 vec[f(A_1)] T
Aot 1 X 1 [ vec[8(Aoy)]
[20 a1 a2 a5] ALy 2Ap A% 2ho| T | vec[8(Xo)]
A ) LR I D ¥4 vec[f( o))

Note that if #(A_;) and 6(A_;) are not available (as occurs at the initial iteration of the

homotopy algorithm), then §(A;) is predicted using the linear prediction given by (4.33).
4.4.2. Basis Options for Solving the Coupled Lyapunov Equations

The main computational burden of the algorithm given below is the solution of the four coupled
modified Lyapunov equations (4.25)-(4.28) or (4.29)—(4.32) at each prediction step or correction
iteration. Efficient solutions of these equations, as described in Appendix B, makes the algorithm
feasible for large scale systems. The most desired solution procedure is based on diagonalizing
the coefficient matrices Ap, Ag, Ay, and A, of the coupled Lyapunov equations. This is usually
possible. However, it is also possible that this diagonalization will be intractable for some points
along the homotopy path. A numerical conditioning test is embedded in the program to determine
whether the coefficient matrices are truly diagonalizable. If they are not, then the coupled Lyapunov
equations are solved using the Schur decomposition. A second option relies exclusively on the Schur

decomposition.
basis = 1. Ap,Aq, Ay and A, are diagonalized when solving (4.25)-(4.28) or (4.29)~(4.32).

basis = 2. Ap, Ag, Ay and A, are in Schur form when solving (4.25)—(4.28) or (4.29)-(4.32).
4.4.3. Outline of the Homotopy Algorithm

Step 1. Initialize loop = 0, A = 0, AX € (0,1], § = So, (P,Q,P,Q) = (Ps,Qo, Po, Qo).
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Step 2.

Step 3.

Ja.

3b.

3c.

3d.

3e.

31

3g.
Step 4.
4a.

4b.

4c.

4d.

4e.

4f.

Let loop = loop + 1. If loop = 1, then go to Step 4.

Advance the homotopy parameter A and predict the corresponding P(A), Q(X), P(}), and
Q()) as follows.

Let Ag = A.
Let A= Ao + A

If pred > 1, then perform the next step to compute P()\o),Q(/\o),}S()\o), and é(/\o) ac-
cording to (4.25)-(4.28). Else, let P(X) = P(X),Q(}) = Q(Xo), P(A) = P(Xo), and
Q(/\) = Q(Ao) and go to step (4), i.e., no prediction is performed.

Transform Ap, Ag, Aw, and A, into suitable matrix form according to the option defined

by basis, then solve (4.25)—(4.28) as described in Appendix B.

Compute (Wi (Ao), U1 (Ao), € Ao)) from (Q(Ao), P(Xe)) by using (A.29)-(A.31) and the pro-
cedure described in Appendix C.

Predict (P(A),Q(A),Wl(A), Ur(2),(A)) by using the option defined by pred.
Compute (Q()), P())) from (Wy(}), Ur(A), Q(A)) using (4.17) and (4.18).
Correct the current approximations P(A*), Q(/\*),P(A"), and Q(A‘) as follows.
Compute the errors (Ep, Eg, Eé, E%) in the correction equations (A.38)-(A.41).

Transform Ap, Ag, Ay, and A, into suitable matrix form by using the option defined by
basis, then solve (4.29)-(4.32) as described in the Appendix B for AP,AQ,AP, and AQ.

Compute (AW, AUy, AQ), from (AQ,AP) by using (A.57)-(A.59) and the algorithms
described in Appendix C.

Let

P(A) «— P(A)+ AP, Q(A) «— Q(M) + AQ,
Wi(A) — Wi(A)+ AWy, Ui(A) — Uy(A) + AU;,  Q()) — Q()) + AQ.
Compute (Q(A), (X)) from (W;(A), Uy(A), (X)) using (4.17) and (4.18).

Recompute the errors (E, Eg, E3, Eé) in the correction equations (A.38)-(A.41). If the
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tolerance, then set Ao = A, and adjust next step size A\ according to the number of

) < 67, where 6* is some preassigned correction

the correction steps required to converge before going to Step 3b. Else, if the number of

corrections exceeds a preset limit, reduce AX and go to Step 3b; otherwise, go to Step 4b.

Step 5. If A = 1, then stop. Else, go to Step 2.

Note that the algorithm described above allows the step size (A)) to vary dynamically de-
pending on the speed of convergence which is gauged by the number of the correction steps. If
the number is small (e.g., < 3), we increase (e.g., double) the previous step size when computing
the next step. If it takes many steps to converge (e.g., > 10), or does not converge, the step size
is reduced (e.g., in half). 6~ in Step 4f is a preassigned correction error tolerance which can be
assigned with two values in the program. One is the intermediate correction error tolerance which
is used when A < 1. The other value is the final correction error tolerance which is usually smaller
and is used when A = 1. The choice of the magnitudes of theses tolerances are problem dependent.
In general, the intermediate correction tolerance is desired to be reasonably large to speed the
homotopy curve following. However, the algorithm may fail to converge if these tolerances are too

large. The final correction tolerance is usually small to ensure the accuracy of the final results.

5. Illustrative Numerical Examples

In this section we present two illustrative numerical examples that demonstrate the effectiveness
of the proposed algorithm. For both examples, the MATLAB implementation of the homotopy
algorithm to design the optimal reduced-order compensator was run on a 486, 33 MHz PC. The

design parameters R, and V, were allowed to vary during the homotopy path.

First, we consider a control design for an axial beam with four disks attached as shown in
Figure 5.1. This example was derived from a laboratory experiment®> and has been considered in
several subsequent publications#®=3=%%_ The basic control objective for the four-disk problem is to
control the angular displacement at the location of disk 1 using a torque input at the location of

disk 3. It is also assumed that a torque disturbance enters the system at the location of disk 3.

The design philosophy adopted here is that the scaling g, of the nominal control weight R, o = 1
and the nominal sensor noise intensity V; 9 = 1 are simply “design knobs” used to determine the
control authority. (Hence, Ro(A) = ¢g2(A)Ra,0 and Vo(A) = g2(A)Va0.) Here, we consider the design

of 27¢ 4" and 6" -order controllers for various authority levels.
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Since at g; = 10, the 2"¢,4** and 6" reduced-order controllers by balancing are all good ap-
proxjmatibns of the corresponding optimal controller, respectively, we use this suboptimal controller
to initialize the homotopy algorithm and deform this controller into the higher authority optimal
controller corresponding to g, = 1. In each of the following passes, we increase the authority level
by decreasing R, and V; by a factor of 10, i.e., g2; = 0.1¢2,0, and at the end of each pass deform the
initial optimal controller to the optimal controller corresponding to the higher authority level. This
process is repeated for every reduced-order design. Figures 5.2-5.4 compare the optimal curves at
various authority levels for an LQG controller, a reduced-order controller obtained by balancing and
an optimal reduced- order controller. In each case, the optimal reduced-order controller performs
better than the balanced controller as the authority is increased. Figure 5.5 compares the optimal
controllers of various orders. This type of figure can be used in practice to determine the order of

the controller to be implemented.

Control Authority RealTime Predictions
q2(1) MegaFLOPs (sec.) &Corrections
1071 412 672 35
1072 407 727 35
1079 393 723 34
104 274 478 24
10°° * 2990 120

Table 5.1. Run-Time statistics of Four Disk Example for n. = 4

Table 5.1 shows some of the run time statistics for solving the 4**-order optimal compensator
for this example at various control authorities. The cubic spline prediction option and the diagonal
basis option were chosen for solving the coupled Lyapunov equations in this comparison. However,
for g2(1) = 10™° case, diagonalizing errors are significant and the basis option was switched to the

Schur form.

The Frobenius norms of P, Q, P, and () are also recorded along the homotopy path and a typical
results are shown in Figures 5.6-5.9 for the 4**-order controller design. It is interesting to note that
as the control authority is increased beyond a certain level (e.g., for n. = 4,¢> < 10™*) those values
approach some stable limit as indicated in the figures. This is because P,Q, P, and Q converge to
fixed values as the control authority increases. It follows that the optimal reduced-order controller
converges to a fixed value. This later phenomenon has been observed previously!®. Furthermore,
most of the prediction/correction steps indicated in Table 5.1 for this special case (g2(1) = 107%)

occur when A is approaching 1 and P,Q, P, and Q approach their final fixed values.
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Algorithm efficiency as a function of the prediction options and basis options for solving the
coupled Lyapunov equations has been studied in the context of a similar algorithm for H, op-

24 It was seen that

timal mode! reduction using the corresponding optimal projection equations
the algorithm is most efficient when using the cubic spline prediction and diagonalizing the coeffi-
cient matrices of the coupled Lyapunov equations. These conclusions also hold for the algorithm

presented here.

The second example illustrates the design of an optimal reduced-order controller for a 17
order model of one of the single-input, single-output (SISO) transfer functions of the Active Control
Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center 14:56,
The actuator and sensor are respectively a torque actuator and a collocated rate gyro. The model
includes the actuator and sensor dynamics. A first order all-pass filter was appended to the model

to approximate the computational delay associated with digital implementation.

Following the same approach, we design an 8'"-order controller for this plant. Figure 5.10
shows the performance curves for authority levels corresponding to g € (1073,1074,...,10°7)
and compare the optimal curves for an LQG controller, and an optimal reduced- order controller.
For this special case, suboptimal reduced- order controllers obtajnea by balancing destabilize the

closed-loop system when ¢ < 107°.

Table 5.2 shows some of the run time statistics for solving the 8*-order optimal compensator
for this example at various control authorities. The cubic spline prediction option and the diagonal
basis option were chosen for solving the coupled Lyapunov equations in this comparison. The “*”
under the MegaFLOPs heading indicates that the MATLAB FLOP counter overfiowed and so the
FLOP data is unavailable.

Control Authority RealTime Predictions
g2(1) MegaFLOPs (sec.) & Corrections
1074 * 4098 19
10~° * 9008 42
107® * 4712 22
10~° * 2216 10

Table 5.2. Run-Time statistics of ACES Structure Example for n, = 8

6. Conclusions

Gradient-based minimal parameterization homotopy algorithms for H, optimal reduced-order

5

dynamic compensation'® are computationally efficient in theory, but tend to experience numerical
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ill-conditioning in practice due to the constraint on the controller basis. Hence, this paper has pre-
sented a new homotopy algorithm for the synthesis of H; optimal reduced-order compensators based
on directly solving the optimal projection equations which characterize the optimal compensator.
The resulting algorithm is usually more numerically robust than the gradient-based homotopy al-
gorithms. However, the number of variables associated with this approach is (2n + n.) * (m + [)
which is greater than the number of variables associated with minimal parameterization approach
(ne(m+1)). The two examples of the previous section demonstrate the effectiveness of the proposed

algorithm.
Appendix A. Formulation of the Derivative and Correction Equations

Before deriving the derivative and correction equations (4.25)—(4.32), we state the following

useful properties about the derivatives of the contragredient transformation of (Q, P)

Note that it follows from (4.17)-(4.19) that 7(A) can be expressed as

7(A) = QOUT(MATNU(A) = QU (MQH A UT (V) (A.1)
or
7(A) = WA NWT(N)P(A) = Wi (0)Q (AW (A)P(X), (A.2)
where
AT() = [Q e 8] . (A4.3)

The representations of 7(\) given by (A.1) and (A.2) are used below as a convenient way of ex-
pressing the derivative equations partially in terms of Q()\) and P()\) as opposed to expressing the
derivative equations only in terms of Wl(/\), Ul(A), and Q()\) For notational simplicity, we omit

the argument A in the subsequent equations.

Differentiating (A.1) or (A.2), gives the following expressions for 7

# = QUIOUT + Q0,0 UT + U, Q7100 0T + U107, (A.4)
or
F=WQTWIP + (W W + il Qw4+ wiatwH P, (A.5)
with
dn-1 . :
- = -le7Pa = —a7aa (A.6)
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since § is diagonal. Below, we derive the matrix equations that can be used to solve for the

derivatives and corrections.
A.1. The Derivative Equations

Differentiating (4.5)-(4.8) with respect to A and using (A.4)-(A.6), yields

0= ALP + PAp + Rp(P,0, P,0) + RE(P,0,P,0) + Vp + VE + Ry, (A7)
0= AgQ + QAL + Ro(P,Q, P, Q) + RY(P,0,P,Q) + Vo + VI + Wi, (A.8)
0= ATP + PA, + Rp(P,Q, P,0) + RY(P,0,P,Q) + Vj + VE, (A4.9)
0= 4,Q + QAT + Ry(P,Q, P,Q) + B3(P,Q,P,Q) + V5 + VI, (4.10)

| where
} Ap 2 A-TPr, (A.11)
Aw 2 A-QE+ W QW PSP, - T), (A.12)
} Ag £ A-T1QE, ‘ (A.13)
A2 A-SP+ (I, - T)QEQU,QIUL, (A.14)
Rp & —Pa(P,Q)PEP(In — ) = (I — 7)TPSPr — PW,Q'WIPSP(I, - 7),  (A.15)

Ro & —0v(P,0)QEQ(In - )T - 7QSQ(I, - 7)T = QU WUTQEQ(L - )T, (A.16)

Rp 2 Po(P,0)PSP(I, = )+ (I, - )T PLPr + 7T PP - £QP, (A.17)
Ry £ 0v(P,0)QEQ(Ln — 7)T + TQEQI, - )T +7QEQ - £PQ, (A.18)
o P,0) 2 Wi IWT - w100 WT + Wi QT W, (A.19)
1P, Q) 2 1,7 UF - 0,100 0T + U7 T, (A.20)

Vp 2 ATP — (I, - %T)]Tpipf, (4.21)

Vo2 AQ - (I, - %T)QEQTT, (A.22)

Vo2 (A+QE)TP 4 (I, - %T)]TPEPT, (4.23)

Vo 2 (A-EP)Q + (I - %T)QiQTT. (A.24)
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Note that it follows from (4.1)-(4.3),

A=A;-Ay, B=B;-By, C=Cs-Co, (A.25)
Ry =Riy—-Rig, Ry= Ry~ Ry, (A.26)
Vi=Vig=Vig, Va=Vo;—Vay, (A.27)

£ = BR;'BT - BR;*R,B™ + BR;'BT, £=CTV;'C+CTV,hC + CTV,C. (A.28)

Next, differentiating (4.17) and (4.18), yields
Q = WaWT + W OWT + W, QW T, (A.29)
P = U,QUT + 1, QUT + U, QU7 (A4.30)
Furthermore, differentiating (4.23) with respect to A gives

0=UW +UW = UfW, + UTW,. (A.31)

A.2. The Correction Equations

The correction equations are developed with A at some fixed value, say A*. The derivation of
the correction equations are based on the relationship between Newton’s method and a particular

homotopy. Below, we use the notation

of

3 o
f(8) = 30" (A.32)
Let f: R™ — R"™ be C! continuous and consider the equation
0= f(9). (A.33)

If 89 is the current approximation to the solution of (A.33), then the Newton correction®® A6 is
given by
gli+1) _ g0) £ AG = — (1)) 1, (A.34)
where _
e £ f(6\). (A.35)
Now, let 8! be an approximation to @ satisfying (A.33). Then with e given by (A.35) construct
the following homotopy to solve (A.33)

(1-B)e= f(6(8), Be€l0,1] (A.36)
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Note that at 8 = 0, (A.36) has solution 8(0) = 6() while (1) satisfies (A.33). Then differentiating
(A.36) with respect to 3 gives
06 L
ol aa = —f(8N e, .
Bﬂiﬂ—o f(6) e (A.37)

Remark A.l. Note that the Newton correction Af in (A.34) and the derivative g%{gzo in
(A.37) are identical. Hence, the Newton correction Af can be found by constructing a homotopy
of the form (A.36) and solving for the resulting derivative g%lg-_—o. As seen below, this insight is

particularly useful when deriving Newton corrections for equations that have a matrix structure.

Now, we use the insights of Remark A.1 to derive the equations that need to be solved for
the Newton corrections (AP,AQ,AP,AQ), or, equivalently, (AP, AQ,AW,,AU,,AQ). We be-
gin by recalling that ) is assumed to have some fixed value, say A*. Also, it is assumed that
(P‘,Q‘,P',Q‘) is the current approximation of (P(A'),Q()\'),P(A'),Q(z\’)) and that (Ep, Ep,
E;,Eé) are respectively tﬁe errors in equations (4.5)—(4.8) with A = A* and (P()),Q(N), P()),
Q(X)) replaced by (P*,Q*, P*,Q™), respectively.

Next, we form the homotopy

(1-B)Ep = ATP(B) + P(B)A+ Ri + T7(B)P(B)SP(B)(B)

~ r1(B)P(B)SP(B) — P(B)TP(B)7(8), (A4.38)
(1- B)E5 = AQ(B) + Q(B)AT + Vi + T(B)Q(B)ZQ(8)r ™ (8)
- 7(B)Q(B)EQ(B) - Q(B)ZQ(B)T T (8), (4.39)
(1-B)E; = (A - Q(B)E)TP(B) + P(B)(A - Q(BT) = 7T (B)P(B)P(B)r(8)
7T(B)P(B)ZP(B) + P(B)ZP(B)7(6), (A.40)
(1- B)E} = (A(B) - TP(B)Q(B) + Q(B)(A ~ TP(B) - m(B)Q(BIZ(B)Q(B)T ()
+ 7(B)Q(B)E(B)Q(B) + Q(BZ(B)Q(B)TT(B). (A.41)

Here, (A, £, 5, Ry, Vi) = (A(X"), T(A%), £(A"), R1(A™), Vi(A™)) are assumed to be evaluated at A =
A" and at 8 = 0, (P(0),Q(0), P(0),Q(0),7(0)) are the current approximations. Differentiating
(A.38)-(A.41) with respect to 3, noting the identity of (A.4)-(A.6) with 7 now representing dﬁ,

and using Remark A.l to make the replacements

dP d - o dP <o d
AP £ dﬁlﬁ 0, AQE2 Qla —0, APEZ —Ia —0, AQ = Qla =0, (A.42)
yields .
0=ALAP + APAp + Rp(AP,AQ,AP,AQ) + RE(AP,AQ,AP,AQ) + Ep, (A.43)
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0= AQAQ + AQAT + Ro(AP,AQ,AP,AQ) + RY(AP,AQ,AP,AQ) + EJ,
0=ALAP+APA, + Rp(AP,AQ,AP,AQ) + RL(AP,AQ,AP,AQ) + E},
0= A,AQ + AQAT + Ry(AP,AQ, AP, AQ) + RL(AP,AQ,AP,AQ) + V5,

where

Ap = A - LPr,

Ay 2 A-QE+ W Q'WTIPEZP(I, - 1),
Ag = A-1Q%,

Ay £ A-ZP+ (I, - )QEQUQUT,

Rp & —Pa(AP,AQ)PSP(I, — 1) - (I, - )T PEAPT — APWQ'WIPEP(I, - 7),

Rq 2 —Qv(AP,AQ)QEQ(I — 7)T = TAQEZQ(I, — 7)T = AQUIQ ™' UT QEQ(In — 7)7,

Rp = Pa(AP,AQ)PSP(I, — 7)+ (I, — 7)T PEAPT + TTPEAP - SAQP,
Ry 2 Qv(AP,AQ)QEQ(n - 7)™ + TAQEQ(I, - )T + TQTAQ - TAPQ,
a(AP,AQ) £ AWIQTTWT — Wi AQQIWT + W QT AWT W,

Y(AP,AQ) & AUQTIUT - U, Q7' AQQUT 4+ U QT AUT.

(A.44)
(A.45)

(A.46)

Next, replacing A with 8 in (4.17), (4.18), and (4.23) and differentiating them with respect to

3, the following equations are derived,
AQ = AWLOWT + W, AQWT + Wi QAW]T,
AP = AU QUT + U, 00UT + U, QAUL,

0=AUIW, + UTAW,

where

dU dw df}
AU, £ d—5|ﬁ=o, AW, 2 ’(‘1—5|B=01 AQ, £ 'gﬁlﬁﬂ"

(A.57)

(A.58)

(A.59)

Appendix B. Efficient Computation of the Solution to the Prediction and Correction

Equations.
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This appendix presents a solution procedure using Ref. 21 for efficiently solving the prediction
equations (4.25)—-(4.28) and the correction equations (4.29)-(4.32). We commence by recognizing
that (4.25)-(4.28) and (4.29)—(4.32) have the following generic form:

0= ALP 4 PAp+ Fu(P,Q, P, Q) + Fp, (B.1)
0= AoQ + QAL + Fy(P,Q, P, Q) + Fo, (B.2)
0=ATP 4 PA, + Fo(P,Q,P,0)+ Fp, (B.3)
0= A0+ QAT + Fu(P,(, P,Q) + Fs, (B.4)

where the linear operators F, : X§Snx® — Snxn  F, : XISnXn — §nxn . X{Snxn — gnxn

and F, : X$S™*" — S™*7" are defined by

Fu(P,0,P,Q) 2 Rp(P,Q,P,Q) + RE(P,Q, P,Q), (B.5)
F(P,Q,P,0) 2 Ro(P,Q,P,Q) + R3(P,Q, P,Q), (B.6)
F(P,0,P,Q) 2 Rp(P,Q, P,Q) + EL(P,Q, P,Q), (B.7)
Fo(P,Q.P,Q) 2 Ry(P,Q, P, Q) + RS(P,Q, P,Q), (B.8)

and Fp, Fg, Fyp and Fj are constant forcing terms. It is easy to verify that (P,Q, js, é,]—'ﬂ, Foo Foy
Fa, Fp,Fg, Fp, FQ) in the above equations represents (P,Q, ﬁ,é,RP + R};,RQ + RngP + R};,
Ry + R, VP + V3 Vo + Vg, Vp+ V],V +V])in (4.25)-(4.28) and (AP, AQ,AP,AQ,Rap +
Rlp,Rag + REQ, Ryp+ Rzp, Ryp+ R;{Q, Ep, Eg, E;.D, Eé) in (4.29)-(4.32), respectively. Our
goal now is to find for some integer m. (as small as possible) linear operators ¢ : XjS»** — R™-,

Go : R™ — S"™X" G, i R™ — S™" G :R™ — §™X" Gy: R™ — S™** such that

Fo(P,Q,P,Q) 2 G.(8(P,Q, P,Q)), (B.9)
Fo(P,Q, P,0) £ Gy(4(P, 0, P,0)), (B.10)
Fo(P, 0, P,0) & G(&(P, 0, P,Q)), (5.11)
FiAP,0,P,0) 2 Gu(o(P, 0, P, 0)). (B.12)

Next, define the following linear operators

61(P,Q) £ vec UTa(P,0)PB, (B.13)
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¢2(P) £ vec BTP, (B.14)

és(P) 2 vec PW,Q-'WIPB, (B.15)
¢4(ﬁ,é) £ vec W;r'y(ﬁ,é)QCT, (B.16)
¢5(Q) £ vec CQ, (B.17)
$6(Q) £ vec QU;Q'UTQCT, (B.18)
and

261 &5 63 61 83 65 I, (B.19)

where
o P,0) = Q- 'WT - W, Q71007 WT + Wy W], (B.20)
(P 0) = 1:07107T - 1,070 UT + U, 07107, (B.21)

are given by (A.19) and (A.20), respectively. It follows from (B.13)~(B.18) that ¢;(-) € R™, ¢s(-)
€ R™2, ¢3(-) € R™, ¢4(-) € R™, ¢5(-) € R™s, ¢g(-) € R™¢, and ¢(-) € R™-where m; =

nem, my =nm, mz =nm, my = nld, ms =nl, mg =nl, and
6
L2 Z (20 + n)(m + ). (B.22)

Note that it is assumed in (B.20) and (B.21) that Wy, U1, and Q are obtained from (A.29)-(A.31).
A procedure to compute Wy, Uy, and Q given Q and P is presented in Appendix C.

Now, note that (4.19)-(4.22) imply that
UIwy =1,,,, UIW, =0, Ufw, =0, I,-1=WUS . (B.23)
Thus, using (4.17)-(4.19) and (B.25), we can rewrite (A.15)-(A.18) as
Rp = Fu1 vec™ (¢1)Ga1 + Faz vec™ ($2)Gaz + Faz vec™'(43)Gas, (B->24)

Rg = Fy1 vec™(¢4)Gy1 + Fyp vec ™ (¢5)Gra + Fiz vec™(¢6)Gos, (B.25)
Rp = F,y vec ™ (61)Ge1 + Fer vec ™ (¢5)Gea + Fez vec ™ (¢3)Ges + Fug vec ' (¢2)Ges, (B.26)

Ry = Fyy vec™ (¢4)Ga1 + Fap vec™ (¢5)Gan + Fus vec™ (¢5)Gas + Fag vec ™ (¢2)Gas, (B.27)
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where
Fa = -U1Q, Ga = R;'BTPWLUS, Fa. = -U;W]PBR;', G, = W U],

Fas = —I,, G = R;'BTPWLUT, (B.28)
F = -W1Q, Gu =V, 'CQUWS, Fyp=-WoUSQCTV;Y, Gy = W],
F3 = =I,, Gy =V, 'CQU, W, (B.29)
Fu =019, Ga=R;'B"PWLUS, Fu=-CT,', Gg,=U0U],
Fa=U,WSPBR;!, Gum=WUL, Fuq=UWIPBR;', G.-=I,, (B.30)
Fo =W1Q, Ga =V, 'CQUWYE, Fap = WoUFQCTV, ™, Gy = hW],
Fgs = WiU7 QC™Vy Y, Guy=1In, Fau=-BR7", Gas=WQW/. (B.31)

Next, define the following shaping matrices
Em; é [Im1 0]a Emz é [Omzxfm Im,‘,O], Ema é [Omax(m1+m2) ImJ 0]’

Em4 -‘A—‘ [0 [m4 0m4 X(m5+ms)]9 Ems é [0 Ims OmsXms]’ Ems é [O Ims]’ (332)

where E,,, € R™*™ for ¢ = (1,2,...,6). Now, using these shaping matrices, we define

Ga1(2) £ Fay vec™ (Epm,2)Ga1 + Faz vec™ (Em,2)Gas + Fag vec™ (Emy2)Gls,
Gyi(2) & Fy vec N (Em, 2)Gp + Fy2 vec ™ (Epn2)Gho + Fia vec H(Epmg2)Gha,
Ger(z) £ Fuy vec ™ (Emy2)Ger + Fup vec™ (Emy2)Geg + Fug vec™ (Emm, 2)Ges

+ Foy vec“l(Esz)G“,
Ga1(z) £ Fy vec Y (Epn,2)Ga1 + Fua vec ™ (Epm,2)Gar + Fas vec'l(Emsz)Gdg

+ Fay vec Y (Ep,2)Gas, (B.33)

and
Ga2Ga+Gh, G =2Gn+Gh, G.20a+6h, GaZGa+6]. (B.34)

It follows from (B.24)~(B.27) that G,,Gs, G, and G satisfy (B.9)-(B.12), respectively.

Now, with the above definitions, the solution procedure for a set of coupled, modified Lyapunov
equations described in Ref. 21 is applied to solve for (P,Q, P, Q) in (B.1)-(B.4). With the above

formulation, the efficiency of the coupled Lyapunov equations solver is realized by exploiting the
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(B.4), the primary computational burden is to invert a matrix of m. x m., or, equivalently, (2n +
n.)(m+1)x (2n+ n.)(m+1) and to solve four sets of m. + 1 standard n x n Lyapunov equations,

with each set having coefficient matrix of Ap, Ag, Aw, and Ay, respectively.

In comparison, by using Kronecker algebra®®, (B.1)-(B.4) can be converted to the vector form
Ax = b where x is a vector con51st1ng of the independent elements of P,Q, P and Q Hence, to
get the solution for (P,Q, P Q), it requires to invert an 2n(n + 1) x 2n(n + 1) matrix. If the
rank condition (2.35) is observed, that is, using (Wy, Uy, ) to replace (P,Q), the solution would
require to invert a matrix of dimension n. X 7., where 7, = n(n + n. + 1) 4 n(n + 1). Thus, if
m << n and [ << n, which is usually true, then m, << n, and the algorithm discussed in this
Appendix will be much more efficient. Furthermore, if (B.1)-(B.4) are first transformed to the
bases in which Ap, Ag, A, and A, are nearly diagonal, respectively, the cost of computation can

be reduced significantly.

low rank properties of the coupling terms. In particular, to solve the prediction equations (B.1)-
Next, we formulate a procedure to solve the derivative equations and correction equations in

a desired basis. First, let Tp,Tg, Ty, and T, be the transformation matrices such that T;lApr,

Té‘lAqTq,TJIAwTw, and T;'A,T, are in suitable form according to the basis option described

in Section 4.4. Next, make the replacements
Ap — T ApTp, Aq « T5'ATo, Aw«— T 'AuTu, Auw— T AT,
P TEPTp, Q—T5'QT;Y, Po—TIPT,, QT QT
Fp — TEFpTp, Fo «T5'FoT5", Fp e ToFpTy, Fs—T'FaTT,
Wy — T7YWy, Uy — TIU, Wy« T7'W,, Uy — TIU,.

Then we obtain

61(P,0) 2 vec UTTIIT,UT (P, 0)TT PB, (B.35)
¢2(P) 2 vec BTT;T P, (B.36)

83(P) & vec PTIT, W0 'WITT PB, (B.37)
64(P,0) 2 vec WTTTT‘T7(P O)T-'QCT, (B.38)
¢5(Q) £ vec CTQQ, (B.39)

¢6(0) & vec OTIT-TU, Q- UTT1QCT, (B.40)
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and

Fy = -TET;TU\Q, Ga = Ry BTPTWLUTT, 'Tp, Foy = -TET;TU.W,] TS PBR;,

Gar = TS\ TWAULT; Tp, Fus = -T3T,T, Gas = R7'BT PT, WU T, Tp,

Fy = -T5'T.W1Q, Gy = Vo lCQT T WETITST,  Fin = =TG5 ' TWLUS T'QCTV,,

Goy = TETSTUWITIT,™, Foa = -T5'Tu, Gua = v,ioleQrrTu,wlTITsT,

Fa=UiQ, Ga=R7'BTPT, WU, Fo=-TiCTV;!, Geo=T3T.TU,QUT,

Fs = UyWETTPBR;', Guo =Tp'TuW UL, Fu=UW{T]PBR;', Ge=T5'Ty,

Fin =WiQ, Ga =V, 'CQTITUWE, Fa = WoUFTS'QCTV,, Gar =TT TUWY,

Fis = WUITZ'QC™V; Y, Gas = T3T; T, Fae=~T;'BR;Y, Gas = Tp'T,WQW],

satisfying (B.24)—(B.27) in the new basis.

Appendix C Conversion from (Q, P) to (W1, U4,9)

Note that the following procedure is valid only in the original basis. It is desired to compute

Wi, Up and  satisfying (4.22)-(4.24). Note that (4.12) implies
Utw, =1,,, UfW,=0, Ufw;=0.

Pre- and post-multiplying (4.22) by U and U7 respectively gives

where

Similarly, pre- and post-multiplying (4.23) by WT and W respectively gives

P=00 o)+ [Sg 3} + mQ}r,
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where

Partition ﬂl and Ql as

T

L=21

It then follows from (C.4) and (C.7)-(C.9) that (4.24) is equivalent to

It now follows from (C.8) that (C.2) is equivalent to

{9. Qzﬂ z[gzlla o%{a o}+
Q, O W,Q 0 0 0

and from (C.9) that (C.5) is equivalent to

QW,)" AWy )T]

0 0

U,y 0 0 0

Py (Ba)T
0 0

P_n 0
Furthermore, (C.11) is equivalent to

_Q_ll = —W—IIQ + Q + Q(-vlll)'r’
Qzl = W,,9.

Similarly, equation (C.12) is equivalent to

P =U;0+9+ OUy,)T,
__P_Zl - Qzlg-

31

UnQ o0 Qo0 QUL)T l,)T
Lo o] |

(C.6)

(C.7)

(C.8)
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(C.10)

(C.11)

(C.12)

(C.13)
(C.14)

(C.15)
(C.16)




Now, (C.14) and (C.16) imply respectively that
Ez] = QZIQ‘I, (C.17)
Qn = é’nQ—l- (C.18)

Furthermore, substituting (C.10) into (C.13) yields

Q= —(Un)"Q+ Q- Uy, (C.19)

Denote the (i, j) elements of _éu, Q
rewrite (C.15) and (C.19) as

1 and Qu respectively by éij, i,j, and #;;. Then we can

éi]. = G0 + 6ijwr +willyg, 14,7 € {1,2,...,nm}, (C.20)
éij = _l:’-.jiwj +5ijwi -wiﬂ.ij’ 1a.7 € {1a2)"'7nm}7 (C21)
where
6"9‘ lfori:j (022)
77 1 0fori# . '

Next, assume 7 = j. Then subtracting (C.21) from (C.20) gives

4(.4},'

Now, assume i # j. Multiplying (C.20) by (w;/w;) and adding the resultant equations to (C.21)

gives ) )
U = Dok T i Ty w; #w; (C.24q)
=17 = w§ _wig L] 3 R .
or, if Wi = Wy,
CBy-d,
."i,’j = —%—4:)1—1— (C24b)

Now, U, is defined by (C.23) and (C.24) and U,; by (C.18). W,, is then defined by (C.10) and
W, by (C.17). W, and U, are now defined respectively by (C.8) and (C.9). Using (4.24) it follows
from (C.4) and (C.7) that W, and U, are given respectively by

Wy = WW,, (C.25)
U, =U0T0,. (C.26)
From (C.22) it follows that ' ‘

which defines €.
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1. Introduction

The analysis of uncertain dynamical systems for robust stability and performance
remains one of the most important issues in modern feedback control theory. This ne-
cessitates the development of efficient analysis tools that allow a control system to be
analyzed for robustness with respect to structured and unstructured uncertainty in the
design model. Hence, considerable effort has been devoted to robust analysis in the recent
years. Many of the developments in robust analysis have focused ‘exclusively on stabil-
ity robustness while ignoring robust performance. However, it is well known that robust
performance is of paramount importance in practice. Specifically, even though stability
robustness addresses the qualitative question as to whether or not a system remains sta-
ble for all plant perturbations within a specified class of uncertainties it is important to
quantitatively investigate the performance degradation within the region of robust stabil-
ity. In practice it is often desirable to determine the worst-case performance as a measure
of degradation. The interested reader is referred to Bernstein and Haddad (1990) and the
references therein for a more complete exposition of the robust stability and performance

analysis problem.

In a recent paper by Hylaﬁd et al. (1994) the tools of majorant analysis used to
develop robust stability and performance tests in Hyland and Bernstein (1987), Collins
and Hyland (1989), and Hyland and Collins (1989), (1991) were extended to positive real
plants controlled by strictly positive real compensators. Specifically, using the logarithmic
norm in the context of majorant analysis, new majorant robustness analysis tests were
developed that yield frequency dependent performance bounds for frequency, damping,
and mode shape uncertainty in positive real vibrational systems. For this class of systems
the positive real majorant bounds developed in Hyland et al. (1994) yield much less
conservative robustness (stability and performance) predictions over previous norm based
majorant performance bounds (Hyland and Collins, 1989) and the performance bound
resulting from complex structured singular value analysis (Hyland et al., 1994; Packard

and Doyle, 1993).

The main purpose of this paper is to extend the results presented in Hyland et al




(1994) to uncertain positive real structural systems in series with actuator and sensor
dynamics. It is well known that in this case the resulting system is no longer positive real
and hence the results of Hyland et al. (1994) can no longer be applied. Using the framework
developed in Hyland et al. (1994) we develop new frequency domain performance bounds
for this more general class of uncertain structural systems. Specifically, the results are
developed by decomposing the equivalent compensator consisting of the original strictly
positive real compensator along with the actuator and sensor dynamics into a positive
real part and a non-positive real part and using the concepts of M-matrices and majorant
analysis. To demonstrate the effectiveness of the proposed approach we apply our results
to an Euler-Bernoulli beam with closely spaced frequency uncertainty and actuator and

sensor dynamics.
Notation

In the following notation, the matrices and vectors are in general assumed to be com-

plex.
IR set of real numbers
C set of complex numbers
I p % p identity matrix
ZH complex conjugate transpose of matrix Z
zij OI Zj; (i,7) element of matrix Z
diag{z1,...,2n} diagonal matrix with listed diagonal elements
Y <7 yij < z;; for each i and j, where Y and 2
are real matrices with identical dimensions
|| absolute value of complex scalar a
det(2) determinant of square matrix Z
llzll2 Euclidean norm of vector z (= VzHz)
omin(Z), 0max(Z) minimum, maximum singular values of matrix Z
IZ e Frobenius norm of matrix Z (= (trZ ZH)%)
p(Z) spectral radius of a square matrix Z
Amin(Z); Amax(Z) minimum, maximum eigenvalues of the Hermitian matrix Z
max{Y1,...,Yn} =Y where ;; = max{¥1,ij,¥2,ij,---»¥n,ij }
L[z(t)] Laplace transform of z(t)

2. Mathematical Preliminaries

In this section we establish several definitions and two key lemmas. A nonnegative

malriz Z is a matrix with nonnegative elements, i.e, Z >> 0. A block-norm matriz



(Ostrowski, 1975) is a nonnegative matrix each of whose elements is the norm of the
corresponding subblock of a given partitioned matrix. The modulus matrizof A € C™*"
is the m x n nonnegative matrix

|Alm £ [lai;]). ' (2.1)

Note that the modulus matrix is a special case of a block norm matrix. Let B € C"*?.

Subsequent analysis will use the relation

|AB|m << |Alm|B|m. (2.2)

A majorant (Dahlquist, 1983) is an element-by-element upper bound for a modulus
matrix (or, more generally, a block norm matrix). Specifically, A is an m x n majorant of
AeCm*if

|Alm << A (2.3)

Let Z € €"*™. Then Z € IR®*" is an n x n minorant (Dahlquist, 1983) of Z if
| Zi <zl (2.4a)
4 < =lzjl, i# 7 (2.4b)
The following lemma is a direct consequence of the above definitions.

Lemma 2.1. Let Zg and Z.g denote, respectively, the diagonal and off-diagonal

components of Z € €"*", such that
Zg = diag{zii}1=1y, Zoa =Z — Zg. (2.5)

Then, if Z4 is an n x n minorant of Zg and Zoq is a majorant of Zoq, Za— Zoa is a minorant

of Z.

A matrix P € IR**" is an M-matriz (Fiedler and Ptak, 1962; Seneta, 1973; and
Berman and Plemmons, 1979) if it has nonpositive off-diagonal elements (i.e., p;; < 0
for i # j) and positive principal minors. Recall that the inverse of an M-matrix is a
nonnegative matrix (Fiedler and Ptak, 1962; Seneta, 1973; and Berman and Plemmons,

1979).




Lemma 2.2.(Dahlquist, 1983). Assume Z € C"*"* and let Z be an n x n minorant of

7. Ifin addition Z is an M-matrix, then Z is nonsingular and
|z << 270 (2.8)
3. | Robust Stability and Performance for Uncertain Vibrational Ss'stems with
Actuator and Sensor Dynamics

We begin by considering the following nth-order, uncertain, matrix second-order vi-

brational system with proportional damping and rate measurements:

ii(t) + 2AQ9(t) + Q3n(t) = Bu(t) + Dw(t), (3.1a)

y(t) = Cn(t), (8.1b)

z(t) = Eq(t), (8.1c)
where

Q = diag{%}%,, % >0,i=12,...,n, (3.2)

A =diag{¢:),, ¢ >0,i=12,...,n, (3.3)

u € IR™ is the control vector, w € IR** is the disturbance variable or reference signal,
y € IR™ represents the rate measurements, and z € IR™ represents the performance

variables (restricted to be linear functions of the modal rates). It is assumed that

Qe 02 {Q+AQ: AN << AQ), (3.4)
Ac A2 {Ao+AA:|AAM << AR), (3.5)
BeB2{By+AB:|ABlu << AB}, (3.6)
DeD 2 {Dy+AD:|ADIu << AD}, (3.7)
CeC2{Co+AC:|ACIM << ACY, (3.8)
EcE2 {Ey+AE:|AEjm << AE). (3.9)
Next, define

Hy 2 (Q,4), (3.10)

H, 2 (B,0), S (3.11)

Hs £ (D, E), (3.12)



and define H;, Hs, and Hj to be the corresponding uncertainty sets, i.e.,

H; 2 {(,A):Q€Q, A€ A},
H, 2 {(B,C) : Be B, CeC},
Hs; 2 {(D,E): DeD, E€E}.

Additionally, define
H £ H, UH, U Has.

(3.13)
(3.14)
(3.15)

(3.16)

Note that H; is the uncertainty set corresponding to errors in the frequencies and damping

ratios while H, and H3 are uncertainty sets cor:esponding to errors in the mode shapes.

It follows from (3.4)-(3.9) that H,, Hy, and Hj are arcwise connnected.

Furthermore, let

so that (3.1) has the s-domain representation

®~Y(H,,s)0(H,s) = Bu(s) + Dw(s),
y(H,s) = Co(s),
z(H,s) = E6(s),

where
®(Hi,s) £ diag{di(H1,5)} iy
and
(Hy,s) 2 > .
) = et v

Note that for all H, € Hy, ®(H,,s) is strictly positive real, so that

&(Hy,jw) + 8H(H1,5w) >0, HyeHi, we(0,00).

(3.17)

(3.18a)
(3.18b)
(3.18¢)

(3.19)

(3.20)

(3.21)

If, alternatively, the system is undamped, that is, { = 0, i = 1,...,n, then (3.19) is

positive real.




To make the model more realistic we now include sensor and actuator dynamics that
are assumed to be known. These dynamics could be empirically determined via hardware
experimentation. The matrix transfer function of actuator dynamics (¥,) and the matrix

transfer function of sensor dynamics (¥,) are given by

Va(s) £ diag{¥a,i(s)}2:, (3.22)
¥, (s) 2 diag{¥,i(s)};2 (3.23)

Appending these dynamics to the system (3.18) yields

&~1(H,,s)0(H,s) = BY,(s)u(s) + Dw(s), (3.24a)
y(H,s) = ¥,(s)CO(s), (3.24b)
z(H,s) = Ef(s). (3.24c¢)

Next, assume that the linear feedback law
u(s) = —K(s)y(s) (3.25)

stabilizes the nominal system, i.e., the system (3.24) with H; = (§0,Ao0) and H; =
(By, Co). Furthermore, assume colocated velocity feedback so that B = CT. Substituting
(3.25) into (3.24a) gives

[®~(H1,s) + F(Ha, 8)0(H,s) = Du(s), (3.26)

where
F(Ha,s) = BY¥(s)BT, (3.27)
U(s) = Wu(s)K(s)Us (5)-

Now, define Fpr(H2, x) to be the positive real part and anr(Hé,ﬂ) to be the non-

positive real part of the “equivalent” compensator F(H2, xv), respectively, so that

F(HL]W) = Fpr(HZ»J“’) + anr(HLJW), w € (0,00), (328)
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where

H Amin (¥ gH >0,
For(Ha, ) £ {5 (Hz, 30, oz“ﬁgfwi(s{:f:’)+ () 2 (3.29)
and .
Frpe(Ha2, ) 2 F(H2, ) — For(Ha2, w0), (3.30)

for all w € (0, 00). Similarly, define

2 [¥(w), Amin(¥(w)+ ¥ (w)) 20,
Wor () = {0’(.7“’) otherwis]: >

and

‘I/npr(]w) 2 \II(](,.)) - \I'pr(Jw), w e (0,00)

The following three lemmas are key to the development of the robust stability and perfor-

mance bounds presented in this paper.

Lemma 3.1. If ®(H,,s) is strictly postive real for all H; € H and Fp(H, w) is
given by (3.29) then [@'I(Hl,]w) + @’H(H;,]w)] + [Fp,-(Hg,Jw) + Fg(Hg,]w)] > 0 and
hence

det[®~ 1 (H1, 20) + Fpr(Ha, )] 20, w € (0,00). (3.31)

Proof. First we show that ®(H;,w) is invertible and ®~1(H;, ) is strictly pos-
itive real. Let z € C”,z # 0, and A € € be such that ®(H,;,w)z = Az and hence
HOH(H,, ) = AHzH, Then ::H[<I>(H1,y.u) + <I>H(H1,_7w)]:c > 0 implies that ReA > 0.
Hence det $(H, xw) # 0. Now note that

O~ (Hy, ) + @ H(Hy, ) = @7V (Hy, ) [O(Hy, ) + O (Hy, 0)] @7 H(Hy, ) > 0,

which implies that ®~1(H,,s) is strictly positive real. Next, since for all H, € H,
For(Ha, ) + FE(Ha, ) 2 0 it follows that |

¢-.:1(1{13.?{"}) + Q—H(HlaW) + Fpr(H2a.7'~") +Fg'(H2)J“)) > 09

for all Hy,€ H; and Hy; € Hy. Now (3.31) is immediate. O
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For simplicity of exposition we define
T(H,w) 2 [@7 (H1,0) + Fpr(H2, )]}, w €(0,00). (3.32)

Furthermore, define S : IR — IR as

a, a>0
S(“)é{o, o < 0.

The next two lemmas are a direct consequence of Theorems 4.1 and 4.2 and Theorems 6.1
and 6.2 of Hyland et al. (1994). The proofs follow from majorant analysis and standard

singular value inequalities and hence are omitted.

Lemma 3.2. (Hyland et al., 1994). If ®(H,,s) is given by (3.19) and Fpr(Hz, ) is
given by (3.29) then

max |[(H, z)lm << Fo(w),
HeH

where
Lo(w) = p~(2)Un, (3.33)

p(s) = max{ min2(Gox — 5C:)(S. - 50%)

2
+ 25 (oma(BoM (1) ~ omuMGIEBIF)]

. 1 - 1 —
mkm(;(ﬂo,k - AQI:)2 - w) - EUmax(‘I’pr(J‘*’) - ‘I’;{r(W))(O’max(Bo) + ||AB”F)2a

mkin(w - é(Qo,k + Ek)z) - %Umax(q’pr(]w) - \Il];,(]w))(amax(Bo) + l|Z\B||F)2}’
(3.34)
Ypr(w) + Vo () = M ()M (),

and U, denotes the n x n matrix with all unity elements.

Lemma 3.3. (Hyland et al, 1994). Assume ®(H,s) is given by (3.19) and
For(Ha, ) is given by (3.29) and let Fy(H2,w) and Foa(Haz, xw), respectively, denote
the diagonal and off-diagonal matrices corresponding to Fpr(H2, ), such that

Fy(Ha,s) = diag{ forii(H2,8)} 1y (3.35)
Fog(Ha,s) = Fpr(Ha,8) — Fa(Ha, s). (3.36)
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Let I(yw) be given by

() = P(w) - Foa(m), (3.37)
where P(jw) satisfies
P(w) = diag{per ()}, | (3.38)

and

pea () =max{2(<o,k — %) Qo — AT)

+ -2—/\min(\llp,(.7w )+ \I/H )Z S(Bokt — ABy)]", - (3.39)
=1
Qz 1 H z = 2
min T —w 2Unmx(‘llpr(%l-’) - ¥ (w)) ;[lBo,kzl + ABy] }
In addition, let Foq(sw) satisfying (3.37) be given by
- m 1
[Foa(20))i; = Omax(Ypr(2))[D_(1Boir | + ABix)? Z(IBOJ’C| +AB)’]%, i#j.
k=1 =1
(3.40)
Then, if I(w) is an M-matrix,
max |[(H, )M << T1(w),
HeH
where
By () = I} ().
Next, define ['(;w) and I*:’npr(gw) such that
[[(w))i; £ min([Po()]ij, [T1(2))i5), @ € (0,00), (3.41)
and
max Ianr(H2a.7‘-'-’)|M << anr(]w)- (3.42)

H;eH,

Now, note that Fppr(xw) is given by

m m
[Fope(20))is = D Y bit¥npr ikbjik,

1=1k=1
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and |[Fapr(3))ij| < [Fope(a))ij where [Fupr()]i; is given by

[Frpe(20))ij = Tmax (¥npr (1)) [ (1Boyie| + ABix)?) (S (Bojiel + BB;e)?) .
k=1 k=1

Next we present the main result of this paper which gives robust stability and perfor-

mance bounds for the uncertain vibrational system described by (3.24) and (3.25).

Theorem 3.1. The dynamic system given by (8.24) and (3.25) is asymptotically
stable for all H € H, if

-~

P(F(]“")anr(}‘")) <1, we(0,00). (3.43)
Furthermore, the output z(H, xv) satisfies the bound

max [2(H, w)lm << |Elm[In = D(0w) Fapr ()] 7 T(2)| Dw ()M, w € (0,00). (3.44)
Proof. It follows from the multivariable Nyquist criterion that in order to establish
asymptotic stability of the closed-loop uncertain system given by (3.24) and (3.25) it
suffices to show that det[®~(H;, ) + F(Ha, )] # 0 for all w € (0,00) and H € H.
Using the definition of a minorant it follows that I — ['(w)Fapr(aw) is a minorant of
I + T(H, ) Fapr(Hz, ) for all H € H. Now (3.43) implies that I — I'(w) Fapr () is an
M-matrix. Hence, it follows from Lemma 2.2 that I + ['(H, x0)Fppr(H2, 3) is invertible
for all H € H and w € (0,00). Futhermore, since by Lemma 3.1 T'(H, yw) is invertible it
follows that

det[®~1(Hy, ) + F(Ha, )] = det{] + T'(H, ) Fopr(H2, )] det[T ™1 (Hy, ).
Thus det[®~1(H,,w) + F(Hz, )] # 0 for all w € (0,00). Now the performance bound

(3.44) is a direct consequence of (2.2), (2.6), and (3.18c). O

Remark 3.1. Note that if F(H,s) is positive real then the spectral radius condition
(3.43) is always satisfied, since Fppr(H2, ) = 0 for all w € (0,00). Hence Theorem 3.1

predicts unconditional stability for all uncertain positive real plants controlled by strictly
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positive real compensators. Furthermore, in this case, the performance bound given by

(3.44) collapses to the performance bound obtained in Hyland et al. (1994).

It is important to note that the results presented in this section are not restricted
to positive real plants and positive real compensators. Specifically, if we assume that
®-1(H,,s) is not positive real in (3.26) and define Gow pr(H, w) and Gow npr(H, xw) to be
the positive real and non-positive real parts, respectively, of Gow (H, yv) = -1 (Hy,w) +
F(H3, pw) such that

Amin (Gﬂw.pr(H,.?w) + G?w,pr(H:J“")) >0

and
GGw,npr(H:]“)) = Gow(H:J‘-‘-’) - Gew,pr(H,Jw),

for all w € (0,00) and H € H, then Theorem 3.1 holds with minor modifications. Note

that, in this case, no assumption on either the plant or the compensator is required.
4. THlustrative Numerical Example

In order to demonstrate the effectiveness of the proposed approach we present an
illustrative example. Specifically, consider the simply supported Euler-Bernoulli beam

with governing partial differential equation for the transverse deflection w(z,t) given by

(32 / , 62 52 ,
m(e) 22D 4 P 1) PHE) = a,),

and with boundary conditions

w(z,t)|z=0,L =0, EI(z)a—zlg%—’izluo,L =0,
where m(z) is mass per unit length and EI(z) is the flexural rigidity with £ denoting
Young’s modulus of elasticity and I(z) denoting the cross-sectional area moment of inertia
about an axis normal to the plane of vibration and passing through the center of the cross-
sectional area. Finally, f (z,1) is the force distribution due to control actuation. Assuming

uniform beam properties, the modal decomposition of this system has the form
oc
w(z,t) = ) We(z)a-(1),
r=1
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L
/omWf(:c)d:czl, W,(z):w/%sin%i, r=12,...,

where, assuming uniform proportional damping, the modal coordinates ¢, satisfy
L
6. () + 2Q6r () + Q2. (1) =/ fl@, )W, (z)dz, r=1,2,....
0

For simplicity assume L = x and m = EI = 2/7 so that \/%- = 1. Furthermore, we
place a colocated velocity /force actuator pair at z = 0.55L. Finally, modeling the first two
modes and defining the plant state as z = [g1 ¢1 92 ¢2]T, and defining the performance of
the beam in terms of the velocity at z = 0.7L, the resulting state space model and problem

data are

z(t) = Az(t) + Bu(t) + Diw(t),
y(t) = Cz(t) + Daw(t),

where

i . 0 1 2 _
A _blo’;lzcl-'éhag [_Q? —2C9i] , =1, (=0.01,

B=CT=[0 09877 0 —0.309]T, D;=[B0sx1], D2=[019],

with the performance variables
z(t) = Erz(t) + Eau(t),

where
0 0.809 0 -0.951

Ex=10 0 0o o |

E,=[0 19T

Using Theorem 3.2 of Haddad et al. (1994) we design a strictly positive real compen-
sator K (s). Next we assume frequency uncertainty in both ; and Q2 with A%y = 0.5 and
2&—52 = 0.4. To reflect a more realistic setting, we include actuator and sensor dynamics

described by
20 20

\Pa(s) = m'a, \I’,(S) = ;—_—*_—2—0.

Because of the actuator and sensor dynamics, ¥,(s)K(s)¥,(s) is positive real only up

to w = 2.5 rad/sec as seen in Figure 1. Hence the techniques developed in Hyland et

12




al. (1994) for generating frequency domain performance bounds cannot be applied here.
For the assumed uncertainty range the complex structured singular value bound (4 bound)
(Hyland et al., 1994; Packard and Doyle, 1993) and the complex block-structured majorant
bound (Hyland and Collins, 1991) are infinite since both methods bpredict instability. The

proposed majorant bound shown in Figure 2 gives a tight finite performance bound.

5. Conclusion

This paper developed frequency domain performance bounds for closed-loop uncertain
positive real vibrational systems controlled by strictly positive real compensators along
with appended actuator and sensor dynamics. These results are developed by using prop-
erties of logarthmic norms in conjuction with majorant analysis. The effectiveness of the

proposed approach was demonstrated on a vibrational uncertain system with actuator and

sensor dynamics.
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